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Abstract

In this paper we show that, in linear models with an increasing number

of parameters, the estimator resulting from the maximization of Akaike’s

Information criterion is asymptotically equivalent to some Bayesian esti-

mators. The family of prior distributions which generates our estimators

are normal distributions, defined on the space of all sequence, and is char-

acterized by an exponential decay of the variance for the higher order

components of the parameter.

1 Introduction

In the case of finite-dimensional parameters, the theory of optimal estimation

is already well established and the theory is well presented in textbooks like

van der Vaardt (2000) and Strasser (1996). However, there is no comprehensive

theory of optimal estimators in the case of infinite number of estimators. One

of the classical optimality results is that of Shibata (1973), which shows under

some mild regularity conditions, the AIC criterion (Akaike, 1973) chooses the

best estimator among sieve estimators.

In this paper, we show the equivalence between a class of Bayesian estimators

and the AIC selection of sieve estimators. We make very strong assumptions

on the class of prior distributions. Suppose the parameters are drawn from

∗We would like to thank Whitney Newey, Ivana Komunjer, Yuping Chen, Li Zhang for
helpful discussions. An earlier version of the abstract was published in the Proceedings of the
Spring 2016 Info-metrics Conference
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such a prior distribution, the best estimator is then simply the estimator that

minimizes posterior risks given the data. Therefore when such priors are ap-

propriate, through the equivalence results, the AIC estimator is asymptotically

optimal among all other estimators. Many papers in the literature have justi-

fied certain information criterion based on a Bayesian rationale. Such as the

Bayesian Information Criterion (Schwarz, 1978) and the Posterior information

criterion (Phillips and Ploberger, 1994). Our paper differs from these literature

because our prior distribution is not dismissible asymptotically.

Consider the linear model of the following form

y(t) = x(t)′β + u(t),
1

where the data is generated in the following way. There is a constant λ ∈ (0, 1)

such that β(i) ∼ N (0, λi) independent over i, and β(i) does not vary with t. The

random error term u(t) is iid N (0, 1). We assume that there are a number of

regressors x(t) = {x(t,n)}n=1,... and they are taken as given. Let the X be an

T × n matrix with orthogonal columns, and each column has Euclidean norm√
T . The number of regressors n is diverging in T that n = O(

√
T ). We call the

dth model the one that include all the first d regressors Xd. Our main result

shows that asymptotically, the AIC optimal model choose the − lnT/ lnλ-th

model. If n grows slower than − lnT/ lnλ, our result implies the largest model

is the best model.

The assumptions on the design matrix can be naturally satisfied in several

applications. For example, in estimating non-linear function using higher order

polynomials, one can apply the Gram-Schmidt process to X and obtain a set of

orthogonal regressors of polynomials in increasing degree. As an other example,

in factor models, usually the factors are estimated as principal components,

which are orthogonal regressors. The principal components are also ordered

naturally according to their variances.

The family of prior distributions is the following data generating process.

1We use subscript parathesis X(t) to indicate the tth item in the vector. If we use a
subscript Xt without parenthesis, it means the sub-vector consisting of the 1st to tth item.
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2 AIC and the OLS regression problem

We use the simple OLS estimator, when we select the first d regressors, the

estimator is

(Xd′Xd)
−1Xd′Y .

and the AIC for d regressors is defined to be T
2 ln(σ̂2(d)) + d where σ̂2(d) is

simply the MLE estimator of the error when d regressors are included into the

regression. Hence

σ̂2(d) =
1

T
(Y −Xd(Xd′Xd)

−1Xd′Y )′(Y −Xd(Xd′Xd)
−1Xd′Y )

=
1

T
((I − Projd)(Xnβn + u)) ′ ((I − Projd)(Xnβn + u))

=
1

T
(βn′Xn′Proj⊥d Xnβn + u′Proj⊥d u− 2u′Proj⊥d Xnβn)

Where Projd := Xd(Xd′Xd)
−1Xd and Proj⊥d := I − Projd. It follows from

the orthogonality of X that

Xn′Proj⊥d Xn = T

[
0d ∗
∗ 1n−d

]

where the 0d represents a d × d zero matrix and 1n−d is an (n − d) × (n − d)

identity matrix. Hence

σ̂2(d) =

n∑
i=d+1

β2
(i) +

1

T

T∑
i=d+1

u2(i) −
2

T
u′Proj⊥d Xnβn.

2

We observe that

• since β(i) is normal of variance λi, β2
(i) is a χ2

1 distribution scaled by a

factor λi, therefore it has mean λi and variance 2λ2i.

• Moreover, each u2(i) is a χ2
1 random variable hand has expectation 1 vari-

ance 2.

2 Since u is a standard normal vector, we can specify the coordinate in whichever way
we want, hence the subscript (i) picks the dimensions that is exactly in the basis of Proj⊥d
and should not be confused with the subscript of the β. Hence for example, au′Proj⊥d u −
u′Proj⊥d+Cu is the sum of n − d independent χ2(1) random variables scaled by (a − 1) plus

another C independent χ2(1) random variables.
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• Denote 2
T u′Proj

⊥
d Xnβn by ε(d). It has expectation 0, whether one takes

βn fixed or not. Hence its variance is simply

4

T 2
E
[
βn′Xn′Proj⊥d uu′Proj⊥d Xnβn

]
.

When we take βn as given and take expectation over u, we get the condi-

tional variance given βn. When we take expectation over β and u we get

the unconditional variance. They are respectively

4

T

n∑
i=d+1

β2
(i) and

4

T

n∑
i=d+1

λi =
4

T

1− λn−d

1− λ
λd+1.

2.1 Comparing asymptotic AIC(d) and AIC(d + C) when

d := − lnT/ lnλ

We want to give a bound on the probability that for a fixed large C, the probabil-

ity that AIC is minized at d+C as T →∞. Such probability is bounded above by

limT→∞ Pr(AIC(d) ≥ AIC(d+C)). It is easy to see that AIC(d) ≥ AIC(d+C)

for some constant C if and only if

σ̂2(d) ≥ e2C/T σ̂2(d+ C),

In other words

n∑
i=d+1

β2
(i)+

1

T

T∑
i=d+1

u2(i)−ε(d) ≥ e2C/T
(

n∑
i=d+C+1

β2
(i) +

1

T

T∑
i=d+C+1

u2(i) − ε(d+ C)

)
.

We rewrite it with a normalization T/C on both hand sides and get

T

C

d+C∑
i=d+1

β2
(i)

≥T
C

(e2C/T − 1)

(
n∑

i=d+C+1

β2
(i) +

1

T

T∑
i=d+C+1

u2(i)

)
− 1

C

d+C∑
i=d+1

u2(i)

− T

C
e2C/T ε(d+ C) +

T

C
ε(d)
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The expectation of LHS is

T

C

d+C∑
i=d+1

λi =
T

C
λd+1 1− λC

1− λ
=
λ

C

1− λC

1− λ

when we plug in d := − lnT/ lnλ. The variance of LHS is

T 2

C2

d+C∑
i=d+1

2λ2i = 2
T 2

C2
λ2d+2 1− λ2C

1− λ2
= 2

(
λ

C

)2
1− λ2C

1− λ2

when we plug in d := − lnT/ lnλ. Hence the LHS is of order O( 1
C ).

On the other hand, the RHS has expectation

e2C/T − 1

C

(
T

n∑
i=d+C+1

λi + (T − d− C)

)
− 1

=
e2C/T − 1

C

(
Tλd+C+1 1− λn−d−C

1− λ
+ T − d− C

)
− 1

→ 2

T

(
λC+1 1− λn−d−C

1− λ
+ T − d− C

)
− 1→ 1

by first plug in d := − lnT/ lnλ and take T →∞.

The variance of RHS is bounded by the following term multiplied by 2 (to

take care of the covariances)

(
e2C/T − 1

C

)2
(
T 22

n∑
i=d+C+1

λ2i +

T∑
i=d+C+1

2

)
+

d+C∑
i=d+1

2

C

+

(
T

C

)2

e4C/TV ar[ε(d+ C)] +

(
T

C

)2

V ar[ε(d)]

→ 4

T 2

(
2λ2C+2 1− λ2(n−d−C)

1− λ
+ 2(T − d− C)

)
+

2

C

+

(
T

C

)2

e4C/T
4

T

1− λn−d−C

1− λ
λd+C+1 +

(
T

C

)2
4

T

1− λn−d

1− λ
λd+1

→ 2

C
+

4

C2

1− λn−d−C

1− λ
λC+1 +

4

C2

1− λn−d

1− λ
λ

by first plug in d := − lnT/ lnλ and take T →∞.

It can be seen that LHS is of order O( 1
C ). The first two terms in the RHS

equals 2− χ2(C)
C which is a Chi-square C degree of freedom variable multiplied

by a factor of −1/C and then translated two units to the right. The last two
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terms is of order O( 1
C ). Moreover, it is clear that the above limits are uniform

for all C ∈ [0, n] as long as n/T → 0.

Therefore, for any large enough C ≤ n, the probability that LHS ≥ RHS is

approximately

Pr(0 ≥ 2− 1/Cχ2(C)) = Pr(χ2(C) > 2C)

=

∫ ∞
2C

1

2C/2Γ(C/2)
xC/2−1e−x/2dx

=
Γ(C/2, C)

Γ(C/2)

≤dC/2− 1e!
bC/2− 1c!

e−C
dC/2−1e∑
k=0

Ck

k!

≤2e−C
dC/2−1e∑
k=0

Ck

k!

≤2e−C
C/2√
πC

(
e

2

)C/2
=

√
C

π
(2e)−C/2,

where we used properties of the incomplete Gamma function3 and Stirling’s

approximation. Hence we conclude that as T → ∞ the probability that d + C

minimizes AIC is bounded by
√

C
π (2e)−C/2 for all large C.

2.2 Comparing asymptotic AIC(d) and AIC(d − C) when

d := − lnT/ lnλ

On the other hand, we want to give a bound on the probability that for a

fixed large C, the probability that AIC is minized at d − C as T → ∞. Such

probability is bounded above by limT→∞ Pr(AIC(d) ≥ AIC(d− C)).

AIC(d) ≥ AIC(d − C) if and only if e2C/T σ̂2(d) ≥ σ̂2(d − C). Apply the

scaling λC−1T to both hand sides, we rewrite the inequality in the following

3 Weisstein, Eric W., ”Incomplete Gamma Function”, MathWorld. (equation 2)
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way:

λC−1

[
T (e2C/T − 1)

(
n∑

i=d+1

β2
(i) +

1

T

T∑
i=d+1

u2(i)

)
−

d∑
i=d−C+1

u2(i)

]
− λC−1Te2C/T ε(d) + λC−1Tε(d− C)

≥λC−1T
d∑

i=d−C+1

β2
(i)

Expectation of LHS is

λC−1

[
T (e2C/T − 1)

(
n∑

i=d+1

λi +
1

T
(T − d)

)
− C

]

=λC−1
[
2C

(
λd+1 1− λn−d

1− λ
+
T − d
T

)
− C

]
→λC−1C

when we take d = − lnT/ lnλ and then take T → ∞. The variance of LHS is

bounded by two times the following:

λ2C−2

[
(T (e2C/T − 1))2

(
n∑

i=d+1

2λ2i +
1

T 2
2(T − d)

)
+ 2C

]

+ λ2C−2
[
(T (e2C/T ))2

4

T
λd+1 1− λn−d

1− λ
+ T 2 4

T
λd−C+1 1− λn−d+C

1− λ

]
→λ2C−24C2

(
2
λ2

T 2

1− λ2n−2d

1− λ
+

2(T − d)

T 2

)
+ 4λ2C−1

1− λ2n−2d

1− λ
+ 4λC−1

1− λn−d+C

1− λ

→4λ2C−1
1

1− λ
+ 4λC−1

1

1− λ

when we take d = − lnT/ lnλ and then take T →∞. Hence the LHS is of order

O(λC/2)

Now consider RHS, it can be seen that

RHS = λC−1T

d∑
i=d−C+1

β2
(i) > λC−1Tβ2

(d−C+1) ∼ χ
2(1)

after taking d = − lnT/ lnλ.

Hence it can be seen that for any fixed large C, the probability that LHS≥RHS
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is bounded above by the probability that LHS≥ χ2(1). This is approximately

Pr(λC/2 > χ2(1)) =

∫ λC/2

0

1√
2Γ(1/2)

x−1/2e−x/2dx ≤
∫ λC/2

0

x−1/2dx = λC/4

for all large C. Hence we conclude that as T → ∞ the probability that d − C
minimizes AIC is bounded by λC/4 for all large C.

3 The Bayesian problem

Our Bayesian problem can be formulated in a slightly more general case of the

infinite dimensional space. However since there is no density function available

in infinite dimensional situations, finding the posterior measure in infinite di-

mensional space requires Radon-Nikodym derivative. A general treatment of

the subject can be found in Stuart (2010).

The standard result gives that the posterior mean vector of β is

β̂ := Σ1/2
(

Σ1/2X′XΣ1/2 + I
)−1

Σ1/2X′(Xβ + u)

Let Q := Σ1/2
(
Σ1/2X′XΣ1/2 + I

)−1
Σ1/2, then β̂ = QX′(Xβ + u).

and the posterior variance covariance

Eposterior[(β − β̂)′(β − β̂)] = Σ1/2(Σ1/2X′XΣ1/2 + I)−1Σ1/2.

Since X′X = TI, β̂(i) = Tλi

Tλi+1β(i)+ λi

Tλi+1X(i)′u. For any given i, the second

term goes to 0 as T →∞ since X(i) and u are not dependent. On the other hand
Tλi

Tλi+1 is approximately 1 for large T and small i, and approximately 0 for large

i. It can be easily check that the first term is approximately β(i) for the first

− lnT/ lnλ−C coordinates, and they are approximately 0 for i ≥ − lnT/ lnλ+C

for some C depends only on λ. This shows that the AIC from the previous section

would select approximately the same number of regressors asymptotically.

4 Asymptotic equivalence

4.1 l2 equivalence

Let β̃ be the AIC estimate and β̂ be the bayesian estimate. Then we have the

following two theorems.
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Theorem 1 Under our assumptions, we have

Eu||β̃ − β̂||22 = o
(
Eu||β − β̂||22

)
e.g. the difference between the estimators is a magnitude smaller than the esti-

mation error.

For some d∗ is optimally chosen by AIC between 1, 2, . . . , n, it is readily seen

that

β̃ = (Xd∗ ′Xd∗)−1Xd∗ ′(Xβ + u) and β̂ = QX′(Xβ + u)

Notice that the two estimates is of different dimensions, β̃ has d∗ non-trivial

dimensions and we would fill the remaining dimensions with 0. Notice that by

definition, Q is a diagonal matrix. Hence we can write Qd∗ be the top left d∗×d∗

square submatrix and Qd∗+ be the (n− d∗)× (n− d∗) be the submatrix at the

bottom right cornor. Hence

β̂d∗ = Qd∗X′d∗(Xβ + u) and β̂d∗+ = Qd∗+X′d∗+(Xβ + u).

And therefore, ||β̃ − β̂||22 = ||β̃ − β̂d∗ ||22 + ||β̂d∗+||22.

Proof.

We can expand the expression and get

||β̃ − β̂||22 =||β̃ − β̂d∗ ||22 + ||β̂d∗+||22
=||(Xd∗ ′Xd∗)−1Xd∗ ′(Xβ + u)−Qd∗X′d∗(Xβ + u)||22 + ||Qd∗+X′d∗+(Xβ + u)||22
≤||((Xd∗ ′Xd∗)−1 −Qd∗)Xd∗ ′Xβ||22 + ||Qd∗+X′d∗+Xβ||22

+ ||((Xd∗ ′Xd∗)−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22

=

d∗∑
i=1

(
β(i)

1 + Tλi

)2

+

n∑
i=d∗+1

(
Tλiβ(i)

1 + Tλi

)2

+ ||((Xd∗ ′Xd∗)−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22

The third and the fourth term can be separated into the norm contributed

from the first d∗ terms in u and the remaining terms. i.e.

||((Xd∗ ′Xd∗)−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22
=u′Xd∗

(
(Xd∗ ′Xd∗)−1 −Qd∗

)2
Xd∗ ′u+ u′Xd∗+Q

2
d∗+Xd∗+′u
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Take any C = ln ln d for d := − lnT/ lnλ, by our previous analysis, we have

that d− C < d∗ < d+ C as T →∞. Hence for T large enough, we can bound

the above expression by

||((Xd∗ ′Xd∗)−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22
<u′Xd+C

(
(Xd+C ′Xd+C)−1 −Qd+C

)2
Xd+C ′u+ u′X(d−C)+Q

2
(d−C)+X(d−C)+′u

Taking expectation over u the above expression can be expressed in terms

of trace, i.e. from E[uu′] = I we have

=tr
((

(Xd+C ′Xd+C)−1 −Qd+C
)2
Xd+C ′E[uu′]Xd+C

)
+ tr

(
Q2

(d−C)+X(d−C)+′E[uu′]X(d−C)+

)
=

d+C∑
i=1

(
1

T
− λi

1 + λiT

)2

T +

T∑
i=d−C+1

Tλ2i

(1 + λiT )2

≤
d+C∑
i=1

1

T (Tλi + 1)2
+

T∑
i=d−C+1

λ2iT

≤
d+C∑
i=1

λ−i

T 2
+ Tλ2d−2C+2 1− λT−d+C

1− λ

=λ−1
1

T 2

λ−dλ−C − 1

λ−1 − 1
+ Tλ2dλ−2Cλ2

1− λT−d+C

1− λ

Since λd = 1/T and λC = (ln d)lnλ, the above expression becomes

λ−1

λ−1 − 1

(ln d)− lnλ

T
− λ−1

λ−1 − 1

1

T 2
+

(ln d)−2 lnλ

T

1− λT−d+C

1− λ
= O

(
(ln d)−2 lnλ

T

)
Therefore,

Eu||β̃ − β̂||22 =

d∗∑
i=1

(
β(i)

1 + Tλi

)2

+

n∑
i=d∗+1

(
Tλiβ(i)

1 + Tλi

)2

+ Eu||((Xd∗ ′Xd∗)−1 −Qd∗)Xd∗ ′u||22 + Eu||Qd∗+X′d∗+u||22

≤
d+C∑
i=1

(
β(i)

1 + Tλi

)2

+

n∑
i=d−C

(
Tλiβ(i)

1 + Tλi

)2

+O

(
(ln d)−2 lnλ

T

)

≤
d+C∑
i=1

(
β(i)

Tλi

)2

+

n∑
i=d−C+1

(
Tλiβ(i)

)2
+O

(
(ln d)−2 lnλ

T

)

for large enough T . The first term has mean 1
T 2λ

−1 λ−d−C+1−1
λ−1−1 = O

((ln d)− lnλ

T

)
10



and variance 2
T 4λ

−2 λ−2d−2C−1
λ−2−1 = O

((ln d)−2 lnλ

T 2

)
, hence the first term is of order

O
((ln d)− lnλ

T

)
. The second term has mean T 2λ3dλ−3Cλ3 1−λ3(n−d+C)

1−λ3 = O
((ln d)−3 lnλ

T

)
and variance 2T 4λ6dλ−6Cλ6 1−λ6(n−d+C)

1−λ6 = O
((ln d)−6 lnλ

T 2

)
, hence the second term

is of order O
((ln d)−3 lnλ

T

)
. Therefore we conclude that

Eu||β̃−β̂||22 ≤ O
(

(ln d)− lnλ

T

)
+O

(
(ln d)−3 lnλ

T

)
+O

(
(ln d)−2 lnλ

T

)
= O

(
(ln d)−3 lnλ

T

)
.

On the other hand, we can get a Chi-square lower bound by comparing the

first d∗ terms in the true parameter β and AIC estimate β̃.

||β̃ − β||22 ≥||(Xd∗ ′Xd∗)−1Xd∗ ′(Xβ + u)− βd∗ ||22
=u′Xd∗(Xd∗ ′Xd∗)−1(Xd∗ ′Xd∗)−1Xd∗ ′u

≥u′Xd−C(Xd−C ′Xd−C)−1(Xd−C ′Xd−C)−1Xd−C ′u,

hence the lower bound follows some scaled Chi-square distribution of d − C

degree of freedom. Taking expectation over u we have

Eu||β̃ − β||22 ≥Eu[u′Xd−C(Xd−C ′Xd−C)−1(Xd−C ′Xd−C)−1Xd−C ′u]

=tr((Xd−C ′Xd−C)−1Xd−C ′Eu[uu′]Xd−C(Xd−C ′Xd−C)−1)

=
d− C
T

Therefore

Eu||β̃ − β̂||22 = o(Eu||β̃ − β||22)

as T →∞. We have therefore shown that β̂ and β̃ are asymptotically equivalent

under l2 norm.

4.2 Equivalence under linear projections

Not only the global distance between the two estimators is smaller than the

estimation error, this is also true for many of the linear projections of the esti-

mator. For all vectors B, B′(β − β̂)) is normal. We show that for all vectors B

satisfying some restrictions B′(β̃ − β̂) is of smaller order than the standard de-

viation of B′(β− β̂)). For this to hold, we need to require that the components

of B = (b(i))
∞
i=1 are all of the same order of magnitude.
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Definition 2 We say the partial sum of a sequence Sn :=
∑n
i=1 b

2
i is of slow

growth if for any constant C

lim
n→∞

Sn+C
Sn

= 1.4

Theorem 3 If B = (b(i))
∞
i=1 whose squared partial sum is of slow growth, then

B′(β̃ − β̂) is of smaller order than the standard deviation of B′(β − β̂).

Recall that we have

β̃−β̂ =


. . .

1
1+λiT β(i) + 1

1+λiT
1
T (X′u)(i)

. . .

− Tλj

1+λjT β(j) −
λj

1+λjT (X′u)(j)

. . .

 and β−β̂ =

 . . .
1

1+λkT
β(k) − λk

1+λkT
(X′u)(i)

. . .



where 1 ≤ i ≤ d∗ < j ≤ n and 1 ≤ k ≤ n.

When B′ = (b1, b2, . . .) is just a row vector, consider B′(β − β̂), it follows a

mean zero normal distribution with variance

n∑
i=1

((
bi

1 + λiT

)2

λi +

(
λibi

1 + λiT

)2

T

)
≥

d∑
i=1

(
λibi

1 + λiT

)2

T

≥O
(

1

T

) d∑
i=1

b2i

hence B′(β − β̂) is of order greater or equal to O
(

1√
T

)√∑d
i=1 b

2
i for d :=

− lnT/ lnλ.

To prove the theorem, we will show that B′(β̃ − β̂) = o

(√∑d
i=1 b

2
i

T

)
under

the assumption that
∑n
i=1 b

2
i is of slow growth. Before we present the proof, we

first prepare the following lemma.

Lemma 4 Suppose Sd :=
∑d
i b

2
i is of slow growth, then for any λ ∈ (0, 1), and

any constant C, and n such that limd→∞ d/n → 0, the following limits hold as

d→∞: ∑d+C
i=1 b2iλ

d+C−i∑d
i=1 b

2
i

→ 0; and

∑n−d+C
j=1 b2j+d−Cλ

j∑d
i=1 b

2
i

→ 0.

4 Kapoor and Nautiyal (1981) studied classes of functions of various speeds of growth, our
definition of slow growth here satisfies the more general hypothesis (H, ii) in their paper, but
not necessarily the more restrictive ones (H, iii)− (H, v).
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Proof. To establish the first limit, observe that for any λ ∈ (0, 1)

λ× λk−i = λk+1 + (1− λ)

k∑
j=k−i+1

λj .

Hence∑d+C
i=1 b2iλ

d+C−i∑d
i=1 b

2
i

=

∑d+C
i=1 b2iλ

d+C+1

λSd
+

(1− λ)
∑d+C
i=1 b2i

∑d+C
j=d+C−i+1 λ

j

λSd

=
Sd+Cλ

d+C+1

λSd
+

(1− λ)
∑d+C
j=1

∑d+C
i=d+C−j+1 b

2
iλ
j

λSd

The first term goes to 0 as d → ∞. The second term can be decomposed into

two parts∑d+C
j=1

∑d+C
i=d+C−j+1 b

2
iλ
j

Sd

=

∑K
j=1

∑d+C
i=d+C−j+1 b

2
iλ
j

Sd
+

∑d+C
j=K+1

∑d+C
i=d+C−j+1 b

2
iλ
j

Sd

≤
∑K
j=1 λ

j(Sd+C − Sd+C−K)

Sd
+

∑d+C
j=K+1 λ

j
∑d+C
i=d+C−j+1 b

2
i

Sd+C

Sd+C
Sd

≤
∑K
j=1 λ

j(Sd+C − Sd+C−K)

Sd
+

 d+C∑
j=K+1

λj

 Sd+C
Sd

.

For any fixed K, the first term goes to 0, the second term can be arbitrarily

small by choosing K large enough and that Sd+C
Sd
→ 1. This establishes the first

limit.

To obtain the second limit, observe the following identity

λj = λk+1 + (1− λ)

k∑
i=j

λi.

13



Therefore∑n−d+C
j=1 b2j+d−Cλ

j∑d
i=1 b

2
i

=

∑n−d+C
j=1 b2j+d−Cλ

n−d+C+1

Sd
+

(1− λ)
∑n−d+C
j=1 b2j+d−C

∑n−d+C
i=j λi

Sd

≤λn−d+C+1Sn
Sd

+
(1− λ)

∑n−d+C
i=1

∑i
j=1 b

2
j+d−Cλ

i

Sd

≤λn−d+C+1Sn
Sd

+
(1− λ)

∑K
i=1

∑i
j=1 b

2
j+d−Cλ

i

Sd
+

(1− λ)
∑n−d+C
i=K+1

∑i
j=1 b

2
j+d−Cλ

i

Sd

≤λn−d+C+1Sn
Sd

+
(1− λ)

∑K
i=1 λ

i(SK+d−C − Sd−C)

Sd
+

(1− λ)
∑n−d+C
i=K+1 λ

iSi+d−C

Sd

For any fixed K the second term goes to 0 as d → ∞ due to the slow growth

assumption. Now observe that

Sk = Sd

k−d∏
i=1

Sd+i
Sd+i−1

,

by the slow growth assumption, there exists d such that if d > d, Sd
Sd−1

≤ λ−1/2.

Let k > d > d, then

Sk ≤ Sdλ−(k−d)/2.

Hence by choosing any K > C, the first and the third term is bounded by

λn−d+C+1Sn
Sd

+

∑n−d+C
i=K+1 λ

iSi+d−C

Sd

≤λn−d+C+1λ−(n−d)/2 +
n−d+C∑
i=K+1

λiλ−(i−C)/2

where the first term goes to 0 as n, d→∞ since d/n→ 0. The second term can

be arbitrarily small by choosing K large enough. This completes the proof.

Now we proceed to the proof of Theorem 3.

Proof. Observe that B′(β̃− β̂) can be separated into four terms. We will show

14



that each of the four terms is of order o

(√
Sd
T

)
.

|B′(β̃ − β̂)| ≤
d∗∑
i=1

| bi
1 + λiT

β(i)|+
d∗∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)|

+

n∑
j=d∗+1

| bjTλ
j

1 + λjT
β(j)|+

n∑
j=d∗+1

| bjλ
j

1 + λjT
(X′u)(j)|

where the d∗ is determined optimally by AIC.

The First Term

Consider the first term, to show that it is of order o

(√
Sd
T

)
, we need to

show that for any M > 0 and for any ε > 0 arbitrarily small, there exists T

such that if T > T ,

Pr

(√
T

Sd

d∗∑
i=1

| bi
1 + λiT

β(i)| > M

)
< ε.

From Section 2.1, we know that for any given large C,

Pr

(
d∗∑
i=1

| bi
1 + λiT

β(i)| >
d+C∑
i=1

| bi
1 + λiT

β(i)|

)
≤ δC

for some fixed δ ∈ (0, 1), d := − lnT lnλ as T → ∞. For convenience, denote∑d∗

i=1 |
bi

1+λiT β(i)| by Σ∗ and
∑d+C
i=1 |

bi
1+λiT β(i)| by ΣC .

Pr

(√
T

Sd
Σ∗ > M

)

= Pr

(
{
√
T

Sd
Σ∗ > M}

⋂
{Σ∗ > ΣC}

)
+ Pr

(
{
√
T

Sd
Σ∗ > M}

⋂
{Σ∗ ≤ ΣC}

)

≤Pr
(
Σ∗ > ΣC

)
+ Pr

(√
T

Sd
ΣC > M

)
≤ δC + Pr

(√
T

Sd
ΣC > M

)

Hence it is sufficient to show that Pr
(√

T
Sd

ΣC > M
)

goes to 0 for any C,M .
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Since ΣC is a positive random variable, by markov inequality,

Pr

(√
T

Sd
ΣC > M

)
≤

√
T
Sd

E[ΣC ]

M

Since ΣC is a sum of half-normal random variable. We can calculate their

expectations.

E[ΣC ] ≤
√

2

π

d+C∑
i=1

|bi|λi/2

λiT

=

√
2

π

λ−(d+C)/2

T

d+C∑
i=1

|bi|λ(d+C−i)/2

≤
√

2

π

λ−C/2√
T

√√√√∑d+C
i=1 b2iλ

(d+C−i)/2∑d+C
i=j λ(d+C−j)/2

d+C∑
j=1

λ(d+C−j)/2

=

√
2

π

λ−C/2√
T

√√√√d+C∑
i=1

b2iλ
(d+C−i)/2

√
1

1− λ1/2

where we applied quadratic mean inequality to get the second inequality. There-

fore

Pr

(√
T

Sd
ΣC > M

)
≤

√
T
Sd

E[ΣC ]

M

≤
√

2

π

√
1

1− λ1/2
λ−C/2

M

√∑d+C
i=1 b2iλ

(d+C−i)/2

Sd

which goes to 0 by Lemma 1. Therefore, Pr
(√

T
Sd

Σ∗ > M
)

is arbitrarily small

for any M as T →∞. This shows the first term is of order o

(√
Sd
T

)
.

Other terms

For other terms, we can use similar arguments as above, by observing all the

following probabilities are exponentially small in C. I.e. by Section 2, for all T
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large enough, there exists a fixed δ ∈ (0, 1) such that

Pr

(
d∗∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)| >

d+C∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)|

)
≤ δC ;

Pr

 n∑
j=d∗+1

| bjTλ
j

1 + λjT
β(j)| >

n∑
j=d−C+1

| bjTλ
j

1 + λjT
β(j)|

 ≤ δC ;

Pr

 n∑
j=d∗+1

| bjλ
j

1 + λjT
(X′u)(j)| >

n∑
j=d−C+1

| bjλ
j

1 + λjT
(X′u)(j)|

 ≤ δC .

In addition, observe that

E

[
d+C∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)|

]
≤
√

2

π

λ−C√
(1− λ)T

√√√√d+C∑
i=1

b2iλ
d+C−i;

E

 n∑
j=d−C+1

| bjTλ
j

1 + λjT
β(j)|

 ≤√ 2

π

λ−C/2√
(1− λ1/2)T

√√√√n−d+C∑
j=1

b2j+d−Cλ
j/2;

E

 n∑
j=d−C+1

| bjλ
j

1 + λjT
(X′u)(j)|

 ≤ E

 n∑
j=d−C+1

|bjλj(X′u)(j)|


≤
√

2

π

λ−C√
(1− λ)T

√√√√n−d+C∑
j=1

b2d−C+jλ
j .

All these expectations go to 0 after multiplied with
√

Sd
T , hence by similar

arguments for the first term, all four terms are of order o

(√
Sd
T

)
.

We therefore conclude that

(β̃ − β̂)′BB′(β̃ − β̂) = o
(

(β − β̂)′BB′(β − β̂)
)

for all B of finite number of columns and each column B(i) satisfies the slow

growth condition, i.e.
∑n
j=1B

2
(ij) is of slow growth in n.

5 Conclusion

We have shown that the AIC model selection would select approximately the

same number of parameters as the Bayesian method. The interpretation is that
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suppose the information we have about the data generating is as described in

the introduction, then given our knowledge about the decreasing nature of the

β(i)’s, our best estimator would be the bayesian estimator β̂. However usually

we cannot know the exact rate of decrease in the β(i)’s, and hence there is

usually no way of constructing such bayesian estimator in practice. The above

analysis shows that we do not need such a bayesian estimator because applying

the AIC to sieve estimators results in a good approximation to the Bayesian

estimator. Therefore it is optimal compared to every other estimator.

Moreover, although we have analyzed when σ2(β(i)) = λi for λ ∈ (0, 1),

it can be seen that the above argument carries through as long as σ2(β(i)) is

decreasing even faster than exponentially in i. Hence AIC is approximately

the best estimator as long as the prior knowledge for β(i) indicates an at least

exponentially decreasing variances in i.
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