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Classical theories show that choices can be represented by a stable utility function when they satisfy consistency axioms

such as transitivity and the independence of irrelevant alternatives. Empirical choice data, however, display several

contextual choice effects that violate these axioms. We study a choice model through a fixed underlying utility function

and explain contextual choices with a novel informational friction: the agent’s perception of the options is affected by

attribute-specific noise. Under this friction, the agent learns useful information when she sees more options. Therefore,

the agent chooses contextually, exhibiting intransitivity, joint-separate evaluation reversal, the compromise effect, the

phantom decoy effect, the attraction effect, and the similarity effect. Because the noise is attribute-specific and common

across alternatives, the classical axioms hold when the alternatives dominate one another in attributes.
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1. Introduction
Modeling consumer choices as the maximization of a stable utility function has practical advantages in the

economic analysis of policy interventions and consumer welfare. Classical theories show that when choices

satisfy certain consistency axioms, e.g., transitivity and independence of contexts, they can be represented

by a stable utility function. However, empirical research has long found that choices often violate these

axioms in certain choice problems.1 In this paper, we provide a natural setting that uses a stable utility

function to accommodate several well-documented contextual choice effects. Through our model, a stable

and well-defined utility function can still be recovered from such contextual choice data.

By contextual effects, we mean the following type of observation. For two objects x and y, their observed

choice probabilities or reported evaluations differ across decision problems in a way that implies their relative

1 For example, intransitivity was spotted as early as Tversky (1969), and some recent evidence is surveyed in Rieskamp et al. (2006).
Empirical studies on other aspects of contextual dependence include Simonson (1989), Pratkanis and Farquhar (1992), Huber et al.
(1982), and Hsee (1996).
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value depends on other competing alternatives. Well-known examples include intransitivity, joint-separate

evaluation reversals (henceforth j-s reversals), and various violations of the independence of irrelevant

alternatives (henceforth IIA). The compromise effect in Simonson (1989) is an example of an IIA violation.

In the experiments, the participants face two choice problems. One has only two options x and y, and the

other includes a third option z. The attributes of the three are such that x is the “middle option” between

y and z. Empirically, including option z can reverse the relative choice frequency between x and y, even

though z itself is rarely chosen.

To systematically model these observations, we assume a novel informational friction under which a

decision maker maximizes a stable preference. We show how such an informational friction induces the

aforementioned contextual effects for correctly designed choice problems. We unify three types of IIA

violations — the compromise effect, the phantom decoy effect, and the attraction effect — by defining a

comparative static called the decoy choice pattern and show in Theorem 1 that this pattern is predicted by

our model. Compared with other models with high explanatory power, ours is parsimonious in the sense that

several contextual effects can be explained within one simple parametric setting. In addition to explaining

contextual effects, our model also possesses desirable regularities. For instance, it predicts that the classical

consistency axioms hold for the class of choice problemswith a dominating alternative in attributes (Theorem

2).

Our novel friction assumes that attribute perception is noisy. An object x has a vector of unobserved

hedonic (or sensory) attributes x∗ that enters the agent’s utility function. The agent can only observe its noisy

signal X|x∗. Such kinds of noisy perception are ubiquitous among ordinary choice problems, including

problems in which the objects’ characteristics are measured and displayed in scientific units.2 One way to

conceptualize this is to think that x∗ andX are both defined in the space of hedonic attributes — the domain

of the utility function. Being in the same domain, they are directly comparable. The label information, on

the other hand, lives in a different space (of verbal or numeric descriptions). The unobserved attribute x∗ is

first mapped to the space of label information through relevant measurements. The label information is then

mapped back to the hedonic domain through interpretation. The output of the interpretation mapping is the

signal X .

unobserved attributes x∗ relevant measurements−−−−−−−−−−→ label information interpretations−−−−−−→ observed signalX.

As argued in Ariely et al. (2003) and Kamenica (2008), scientific measurements and numerical information

are hard to interpret. Such information is usually not natural to human experience, so its interpretation (X)

is only a noisy indicator of the underlying hedonic attribute levels (x∗) even when no information is lost

2 For example, the brightness level x∗ of a light bulb is one of its hedonic attributes. Approximations or relevant measures for x∗ are
printed on its label in measurement units, say in this case, of 50 lumens. The observed signal X is then the agent’s out-of-context
interpretation or mental visualization of 50 lumens of brightness.
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in the measurement step.3 A person may have different interpretations of the same label information in

different environments at different times. Therefore, although the print on the label is fixed, the readings or

interpretations (X) made by an agent can be modeled as random.

Our friction assumes that conditional on the hedonic attributes, the noisy signals across different alter-

natives are correlated. This causes the agent to make different inferences about x∗ when she faces different

alternatives. To be more specific, the agent’s information depends on context exogenously. In the choice

problem {x,y}, the agent observes the signals X,Y , and in the choice problem {x,z}, the agent observes

X,Z. Such dependency alone does not imply contextual choices.4 The important assumption is that X|x∗,

Y |y∗, and Z|z∗ are correlated. When the agent observes X,Y in the choice problem {x,y}, she forms a

posterior belief, say about x∗, conditional on both signals X,Y . Because of the correlation, Y can provide

additional information about x∗, and so x∗|X,Y 6= x∗|X . When she faces the choice problem {x,z}, her

posterior belief about x∗ is conditioned on bothX,Z. These two posterior beliefs, x∗|X,Y and x∗|X,Z, are

generally different when y∗ 6= z∗, as are the posterior expected utilities of x in these two choice problems.

Therefore, even if the agent is indifferent between {x,y} and indifferent between {x,z}, she typically would

not be indifferent between {y,z}. This simple observation can lead to intransitive choices.

The main novelty in our friction is that the correlation of the noisy signals is restricted to be positive across

alternatives. We term this type of noise the imperfect perception of attributes as it is essentially specific to

each attribute but not to each alternative. One may think of it as a misinterpretation of the relevant scientific

units. If the noise biases an object’s attribute upwards (downwards), it also biases upwards (downwards)

perceptions of the same attribute of other objects. Given such noise, it becomes harder to perceive the

absolute value of an attribute of an object than to perceive the relative difference between objects. Note that

this noise in attributes is qualitatively different from noise in utilities. As shown in Proposition 3, our model

does not satisfy monotonicity, and hence cannot be interpreted as a random utility model.

Such positively correlated noise can arise even when the label information is seemingly simple. Take

choosing apartments as an example. Suppose an important hedonic attribute for the decision maker is

the safety of the neighborhood. She can obtain a sense of safety by consulting the yearly crime statistics

published by the local authority.5 For each neighborhood, its safety can be measured in simple units such as

the “number of crimes per year per ten thousand people” (the label information), but the decision maker’s

reading (X) of these numbers is still a noisy signal of safety (x∗). For instance, it is not clear how strict the

definition of crime is according to the authority. The decision maker’s interpretation can be an exaggeration

3 For example, different people would visualize different brightness levels (X) in their minds after reading “50 lumens”.

4 Indeed, when X|x∗, Y |y∗, and Z|z∗ are independent, Y and Z do not provide any information about x∗ and vice versa. Hence
the posterior expected utilities of x in both {x,y} and {x,z} are equal in distribution. The same holds for both y and z. The agent’s
choice reduces to a random utility model.

5 For example, the local police department and city websites or the Uniform Crime Reports published by the FBI in the US.
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(understatement) of safety for all neighborhoods if the local authority applies a narrower (broader) definition

of crime than the decision maker realizes. Because the decision maker’s perception is either exaggerated

for all neighborhoods or understated for all neighborhoods, this uncertainty in interpretation results in the

positively correlated imperfect perceptions. The decision maker can easily compare which neighborhood

is safer, but she has more difficulty knowing the exact safety levels. Similar uncertainty in perceptions can

occur for almost any attribute.6 In general, imperfect perceptions arise whenever the decision-making agent

believes that there is a common component in the uncertainty in her attribute perceptions.

The imperfect perception assumption is also supported by the contrast effect in psychology. The contrast

effect is a well-known psychological phenomenon that refers to the enhancement or diminishment of the

perception of any attribute when the object is contrasted with other objects weaker or stronger in the

same attribute.7 To illustrate the contrast effect in our model with the apartment example, suppose that the

decision maker visited two apartments x and y with published neighborhood crime rates 5‰ and 8‰ (label

information) respectively. Then, she researches a third apartment z and discovers that the crime rate is 1‰.

It is much safer than both x and y. Since 1‰ is unusually low, the decision maker infers that it is unlikely

that the local authority adopts a very broad definition of crime. Therefore, a narrower definition (than the

decision maker’s) is probably being used, causing a downward bias in the agent’s interpretations (X,Y, and

Z) of the data. Hence, after checking the data for z, she revises her perception of the safety of both x and

y, and they are perceived as less safe than before. This is in accordance with the contrast effect, which

occurs when a very safe option z is available, causing x and y to be perceived as less safe. In Section 2, we

elaborate further that the existence of positively correlated imperfect perceptions is also supported by the

random anchoring phenomenon found in psychology.

When the decision maker’s preferences are monotonically determined by a single attribute, the contrast

effect is inconsequential: she always chooses to maximize (or minimize) that attribute.8 However, if her

preference involves at least two attributes, a third competing option z can affect her perception of the two

attributes differently and simultaneously increase one and decrease the other. Hence, the relative utilities of

x and y can change when contrasted with z.

One example is the compromise effect, and below we explain intuitively how our model addresses it.

Suppose in choosing apartments, the decision maker faces a trade-off between neighborhood safety and

6 The noise can also arise naturally in the perception of nonnumerical information. Imagine that in addition to safety, the decision
maker also prefers apartments with abundant natural light. She visits two apartments on the same day and sees that apartment x
is brighter than y (i.e. X is brighter than Y ). Although she does not know how bright the apartments typically are (she does not
observe x∗,y∗), she learns the noisy signals (X and Y ) from her visits. Each signal may be inaccurate, but the difference between
signals can clearly indicate which room is typically brighter. After all, she is seeing both apartments at roughly the same time, in
the same weather. There is a natural common component in the noise of the signals. The same intuition holds in perceiving other
attributes, such as the noisiness of the neighborhood and the length of commuting time.

7 See e.g. Schwarz and Bless (1992) and Plous (1993), pages 38 - 41.

8 That is, if the agent only cares about safety, she always chooses the safest apartment.
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energy efficiency. She prefers (in hedonic attributes) higher safety as well as higher efficiency. There are two

apartments x and y and our decision maker reads the relevant label information about the two attributes.

Suppose x is in a safer neighborhood (crime rate of 5‰) but its measured efficiency level is medium,

whereas y is slightly less safe (crime rate of 8‰) but has high efficiency. Suppose that between the two, the

decision maker is inclined to choose y. Now introduce a third option z that is in a very safe neighborhood

(crime rate of 1‰), but its energy efficiency is measured to be very low. According to the compromise effect,

introducing z makes x a compromise between z and y, and x is chosen more often. In our model, due to

the contrast effect, the (posterior) perceived safety of both x and y is reduced after z is introduced. Again,

due to the contrast effect, the (posterior) perceived energy efficiency of both x and y increases after z is

introduced. Now, reducing the perceived safety of x and y affects both apartments negatively, but more so

for y because of diminishing marginal utility in safety. Increasing the perceived efficiency of x and y affects

both apartments positively, but more so for x, due to the diminishing marginal utility in energy efficiency.

Consequently, x has a higher expected utility level relative to y after z is introduced, and is chosen more

often.

In addition to the assumption of imperfect perceptions, Bayesian updating is also an important component

of our model. We adopt Bayesian updating because it is the canonical benchmark in modeling information

and learning. If there is no updating at all, presenting the alternative z will not affect perceptions of x and y.

Despite its importance, we do not claim that people in reality perform sophisticated Bayesian updating and

calculate posterior expectations. Instead, we interpret the model as an as-if representation of the decision

process. As seen in the example above, this as-if process does parallel an intuitive explanation of contextual

choices.

We present the general set-up in Section 2. In Section 3, we apply a special parametric case of the model

to explain contextual choices in detail. An analysis of the general model is presented in Section 4, where we

study the decoy choice pattern, choices related to dominating options, and some extensions of the model.

Section 5 contains further discussion and the limitations of the model. Additional proofs are in the appendix.

1.1. Related Literature

Anumber of contextual effects can be explained by existingmodels in the literature using context-independent

preferences. Our paper contributes to this literature by proposing a new and parsimonious informational

mechanism that complements existing explanations. In particular, our model explicitly connects contextual

choices with the underlying attribute space. Therefore, our model not only explains these contextual effects

but also explains why these effects only happen for certain options in the attribute space. The following

briefly reviews the contextual effects we focus on and some of the related context-independent utility models

in the literature.
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• Intransitivity (Tversky 1969) can be accommodated by random utility models such as the mixed logit

model via the Condorcet cycle. Some other models whose choice probabilities contain a random utility

component, such as the model in Guo (2016), can also accommodate intransitivity. Other notable models for

intransitivity can be found in Table 5 of Rieskamp et al. (2006). We describe intransitive choices in detail

and illustrate how our model addresses this phenomenon in Section 3.2.

• J-s reversal (Hsee 1996) can be accommodated by the models in Wernerfelt (1995) and Kamenica

(2008), but not by random utility models. Since j-s reversal is an evaluation problem instead of a choice

problem, many models on choice do not directly address this phenomenon. We describe j-s reversal in detail

and illustrate how our model addresses this phenomenon in Section 3.3.

• The compromise effect (Simonson 1989) can be accommodated by several models, including those of

Wernerfelt (1995), Kamenica (2008), Guo (2016), and Natenzon (2019), but cannot be addressed by random

utility models because of the monotonicity property. The models that accommodate the compromise effect

usually also accommodate the attraction effect of Huber et al. (1982). However, very few models consider

unchoosable alternatives, so the phantom decoy effect (Pratkanis and Farquhar 1992) is unaddressed. We

describe and address the compromise effect in detail and its relation to the monotonicity property in Section

3.4. In Section 4.1, we define a comparative static for the decoy choice pattern that unifies the compromise

effect, the attraction effect, and the phantom decoy effect. We show in Theorem 1 that our model satisfies

this decoy choice pattern.

• We also briefly discuss how our model addresses the similarity effect (Tversky and Russo 1969) in

Section 4.4. This effect can be accomodated by most of the papers in this literature.

Our paper is related toWernerfelt (1995), Kamenica (2008), Guo (2016), andNatenzon (2019). Guo (2016)

and Natenzon (2019) both study single agent decisions under informational frictions. Their information

structures are not specific to attributes and hence are different from ours. The friction in Guo (2016) is

the uncertainty about individual preferences. The model endogenizes the effort to learn one’s preference

in different contexts. Different from Guo (2016), we do not endogenize information acquisition; hence

our mechanism is not related to phenomena in which the selective acquisition of information is the main

concern.9 Natenzon (2019) studies a transitive choice model in which the agent directly receives a signal

about the utility levels of each option. In contrast, our model studies a different information structure and

can explain intransitive choices. One important distinction of our approach from the literature is that we

directly model attribute information. Therefore our model naturally identifies (through attributes) the types

of choice problems in which contextual effects can (or cannot) arise. For example, our model complements

the above theories by predicting that these contextual effects arise only when there are at least two attribute

dimensions under consideration. Our results also state various contextual choices in terms of comparative

9 For example, see Guo (2016)’s explanation of choice overload.
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statics in both attributes and choice probabilities, instead of choice probabilities alone. In this sense, our

paper is closest to Wernerfelt (1995) and Kamenica (2008) who also model information from more than one

attribute. However, in their paper learning is the equilibrium outcome of a consumer-retailer market game.

In contrast, our model does not require strategic considerations for contextual choices to occur.

Our model also differs from the class of random utility models, which includes Block and Marschak

(1960), Falmagne (1978), Thurstone (1927), Luce (1959), Tversky (1972), Hausman and Wise (1978) and

more recently, Gul et al. (2014). As detailed in Section 3.3, because random utility models are monotonic,

they cannot explain the increase in absolute choice probabilities in the compromise effect.

Our model is also related to another stream of the literature on reference-dependent preferences in which

utilities are directly assumed to depend on the choice set. See e.g. Simonson (1989), Tversky and Simonson

(1993), Koszegi and Rabin (2006), Bordalo et al. (2013), Ok et al. (2015) and Tserenjigmid (2019). This is

a broad class of models that assumes a context-dependent utility function with a reference point. Many of

these models, however, do not explicitly model how the reference point changes from one choice problem

to another. When the reference point is left as a free parameter, a reference-dependent model typically has

high explanatory power but lacks predictive power — it does not provide testable implications. On the other

hand, their prediction power can be defined and tested in empirical studies in which an obvious reference

option is given by design. Our paper complements such models in studying decision problems that involve

no obvious reference point by design.

We now focus our comparison with the class of reference point models in which the reference point is

explicitly modeled. To the best of our knowledge, the most notable examples are Koszegi and Rabin (2006),

Bordalo et al. (2013), Ok et al. (2015) and Tserenjigmid (2019). Our model is qualitatively different from all

these models. The model of Koszegi and Rabin (2006) does not capture the compromise effect, and hence

it is qualitatively different from our model. The model of Bordalo et al. (2013) is the most general in the

sense that it allows for both the compromise effect and the reverse of the compromise effect, as well as both

the attraction effect and its reverse. Such generality distinguishes their model from ours. The model in Ok

et al. (2015) does not allow pairwise cycles, a prediction that is not ruled out by our model. The model of

Tserenjigmid (2019) also differs from ours since it does not directly explain the j-s reversal. We explain the

above differences in detail in Section 4.6.

Apart from comparing with these existing models, we ask a further question that in terms of qualitative

predictions, how does our model relate to this whole class of reference point models. We find that in terms

predicting choices, there is a non-empty intersection. In Section 4.5, we derive a reference point model

(outside existing literature) that is choice-equivalent to a limiting case of our model. However, we show in

the same section that this reference point model cannot explain evaluation tasks such as the j-s reversal. This

relation between our model and the class of reference-dependent models is also a conceptual contribution

of our paper: a very simple/minimal informational friction under standard Bayesian updating of beliefs can
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be shown to explain several contextual choices without directly assuming a reference point. Moreover, our

approach enjoys the important advantage of a stable underlying utility function. Through our model, a fixed

utility function can be estimated from the choice data. Taking this utility function as a behavioral benchmark,

welfare analysis can then be easily carried out.

2. The Model, Its Assumptions and Its Motivations
Empirically, contextual choices occur only when options have two or more attributes. Therefore, we take the

primitives of our model to be the hedonic attributes of each object (which are not precisely observed by the

agent) and use Rn for n≥ 2 to represent the attribute space. The attributes of each item x are represented as

a vector x∗ := (x∗1, . . . , x
∗
n) in that space, with each coordinate given by the corresponding attribute level.

The restriction to R2 is for expositional simplicity, and the proofs of the main results can be extended to

higher dimensions in a straightforward manner.

The vector of attributes x∗ is not directly observed by the agent. The agent observes noisy signals of

the attributes and tries to maximize her payoff given those signals. We assume that the agent has context-

independent preferences over the attribute space that can be represented by a vNMutility function. Following

standard consumer theory, we assume that her preferences are monotonic in all attributes. Additionally,

utility has diminishing returns, and there is weak complementarity between attributes. We call a preference

standard if it displays these properties.

Assumption 1 (Standard Preference). The decision maker’s preference over the distributions on R2

can be represented by a vNM utility function u :R2→R that is differentiable, increasing (i.e., u1 > 0, u2 >

0), and exhibits decreasing marginal sensitivity (i.e., u11 < 0, u22 < 0) and weak complementarity (i.e.,

u12 ≥ 0 ). Any utility function representing a standard preference is called a standard utility function.

Moreover, the agent is Bayesian with a prior belief over R2. The prior distribution represents the agent’s

anticipation of attribute levels before she observes any signals. We endow the agent with a normal prior

distribution. Without loss of generality, we translate and scale the attribute space such that the prior mean

is at the origin and the prior variance is Ω :=

[
1 r
r 1

]
for some r ∈ (−1,1).10 After receiving the signals, the

agent chooses an option to maximize her posterior expected utility.

Assumption 2 (Normal-Bayesian Agent). The decision maker is Bayesian with a normal prior

N (0,Ω) and maximizes her posterior expected utility.

Next, we assume a novel type of noise in the perception of attributes. The noise is specific only to

the attributes, and hence is common across alternatives. Let capital letters (i.e. X = (X1,X2)) denote the

noisy signal of the attributes x∗. For instance, in the choice set {x,y}, the attribute levels x∗ and y∗ are

10 Such a correlation can arise when, for example, the two attributes are price and quality. One can interpret r < 0 as the agent
having a prior belief that a good price is associated with low quality.
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signaled by X = x∗+ ε and Y = y∗+ ε, where ε has the same realization for all objects. Hence the agent

perceives the relative differences in attributes between the items, i.e., x∗ − y∗ = X − Y , better than the

absolute locations x∗ and y∗ in the attribute space. This common noise across alternatives is assumed for

mathematical simplicity and can be relaxed. Section 4.3 shows that the noise does not have to be identical

across alternatives. Instead, the noise for each attribute needs to be positively correlated across alternatives.

In addition, although the noise is additive, our model can also cover the case of multiplicative noise by

logarithmically transforming the attributes.11

Assumption 3 (Imperfect Perception). For any n alternatives {x1, . . . ,xn} each with attributes

x1∗, . . . ,xn∗ ∈ R2, the agent receives signals X1, . . . ,Xn, where X i − xi∗ = ε for all i. The noise term

ε∼N (0, T−1) is normal with variance matrix

T−1 =

[
1/t21 R/(t1t2)

R/(t1t2) 1/t22

]
for some

1

t21
+

1

t22
> 0, and some R ∈ (−1,1).

Several motivating arguments can be made for this assumption. As discussed in the introduction, our

perception of attributes is susceptible to imperfections even when the attributes are measured and described

in numbers and text. Here, x∗ represents a vector of hedonic attributes that enter the utility function. It

can include different sensory information, such as brightness or apparent temperature. Some qualities or

the intensity of x∗ can be approximated or measured in units such as lumen or degrees Celsius. When

people read and interpret these measurements, they obtain a signal X for x∗ by interpreting these numbers

back into sensory information. Experiments show that the people are not able to interpret these numerical

information perfectly (Green and Srinivasan 1978, Ariely et al. 2003). For instance, Ariely et al. (2003) find

that simply hearing a sound provides a better perception of the volume than reading the measured volume in

numbers. Pictorial descriptions of an item generate as precise, if not more precise perceptions of its attributes

than numerical and verbal descriptions do (Green and Srinivasan 1978). One explanation for these findings

is that the decision maker is subjectively uncertain in interpreting units. As Kamenica (2008) argues, in

general “interpreting technical units of quality can be difficult.” For instance, a person who is used to seeing

temperature in degrees Celsius finds it hard to interpret degrees Fahrenheit. In fact, even in degrees Celsius,

the same person’s interpretation of numeric temperatures is noisy. Due to such difficulty, reading precise

measurements provides only a noisy indicator of the hedonic attribute levels. When the decision maker is

uncertain in interpreting technical units, her interpretation of the measured attributes may be lower or higher

than their true level, resulting in an under or overperceived attribute across all alternatives. In this way, a

decision maker would believe there is a common component in her noisy perceptions across all options.

11More precisely, suppose the noisy signal is defined by X = x∗× eε, where ε is the same across alternatives. This multiplicative
specification of the signal maintains the attribute ratio instead of the difference between alternatives. In this case, one can first apply
a log-transformation so that lnX = lnx∗+ ε. Our model is then directly applicable to the transformed variables.
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There is also an instrumental argument for imperfect perception: people’s perceptions are inconsistent

in the same way as if they were affected by imperfect perceptions. Indeed, some experiments in Ariely

et al. (2003) show that people’s perceptions can be affected by a “random anchor”, causing “coherent

arbitrariness”. In evaluation tasks, participants usually evaluate the absolute value of an attribute level

arbitrarily, but differences in evaluations across alternatives is coherent with the differences in their attribute

levels. This finding is robust to whether the attributes are displayed in technical units or not. As stated by

Ariely et al. (2003),

“[W]e show that consumers’ absolute valuation of experience goods is surprisingly arbitrary, even

under ‘full information’ conditions. However, we also show that consumers’ relative valuations of

different amounts of the good appear orderly . . . ”12

In light of these findings, our imperfect perception assumption can be interpreted as a random anchor

affecting the perception of attributes. Hence, the agent either overperceives or underperceives each attribute

across all alternatives.

There may be other arguments for what causes this particular noise in perception. Nevertheless, the

explanation in our model holds as long as the decision maker believes there can be a common noise in her

perception of the attributes. Regardless of whether her belief is true, contextual effects can occur through

posterior utility maximization when the agent forms her posterior taking into consideration the imperfect

perception.

Normality is adopted for prior-signal conjugacy.We allow the standard deviations to differ across attributes

as long as one of them is strictly positive (i.e. 1
t21

+ 1
t22
> 0), and the other can be zero (e.g. t1 =∞). Our

assumption also allows the noise across attributes to be correlated (R).13

Below summarizes some of the notations. Bold letters (e.g., x,y,z) denote different alternatives. Let-

ters with an asterisk (e.g., x∗,y∗,z∗) denote the (unobserved) hedonic attribute levels of objects in

R2. Capital letters (e.g., X,Y,Z) denote their respective signals. We denote more than three alterna-

tives with superscripts. Calligraphic letters (i.e., X ,Y,Z) denote the agent’s posterior beliefs about the

hedonic attributes. Subscripts distinguish the respective attribute dimensions for a given vector. We use

C(xl,{x1,x2, . . . ,xi, (xi+1, . . . ,xi+j)}) to denote the choice probability of xl from the set {x1 . . .xi+j}

in which {xi+1, . . . ,xi+j} are unavailable. A C(., .) that assigns a probability to any x in every nonempty

12One can interpret these observations as follows. When an attribute level of an option is perceived to be higher (and hence of higher
value), the attribute level for other options is also perceived to be higher (and so are also of higher value). However, the differences
in the perceived levels (and in the values) is consistent with the differences in the actual attribute levels among the options. Hence,
differences between options are perceived coherently, but the absolute value of the attribute is perceived arbitrarily.

13 Such a correlation can arise when attributes are closely related, such as the sugar content and calories in a soft drink, and one
might expect such a correlation in the noise across these attributes.
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finite set of alternatives S, with any S′ ( S specifying the unavailable objects, is called the choice behavior

of an agent. The choice behavior satisfies

i∑
k=1

C(xk,{x1,x2, . . . ,xi, (xi+1, . . . ,xi+j)}) = 1.

3. A Special Parametric Case
In this section, we illustrate stochastic intransitivity, j-s reversal and the compromise effect with the following

parametric setting. The stable preference is described by the simple exponential utility u :R2→R

u(x1, x2) =−e−3x1 − e−3x2 .

We adopt this simple CARA utility function in this section because it works well with the normal distribution

and provides an analytical expression for the posterior utility and choice probabilities. In this section, the

noise structure is simple and one dimensional. The first attribute is perfectly interpreted and perceived

without noise. Noise exists only in the second attribute. Mathematically, this is expressed as

ε∼N
(

0,

[
0 0
0 1

])
.

Finally, the agent’s prior is taken to follow the standard bivariate normal distribution centered at the origin.

3.1. The Contrast Effect

Before addressing the choice effects, we first illustrate how the contrast effect is manifested in the model. In

this parametric setting, the first attribute is perceived noiselessly so the contrast effect only occurs for the

second attribute. SinceX−x∗ = Y −y∗, a straightforward calculation of the posterior belief from Bayesian

updating gives

X1|X,Y = x∗1, and X2|X,Y ∼N
(

1

3
(2X2−Y2),

1

3

)
.14

The agent’s belief about the first attribute, X1|X,Y , exactly equals its hedonic attribute level x∗1 since it is

perceived noiselessly. Her belief about the second attribute exhibits the contrast effect. Under the prior, the

probability of y∗2 being extremely high is limited. If y is surprisingly high in the second attribute (i.e., then

Y2 is also high), the posterior belief then assigns larger probability on ε2 being high (so that it makes sense

to see a high Y2 when y∗2 is low in the prior). Because X2 − x∗2 = Y2 − y∗2 = ε2, this creates the contrast

effect in perception: x is perceived to be poorer in the second attribute. After the introduction of y, the agent

thinks that ε2 is high. Her posterior for x∗2 under the same X2 needs to be adjusted downwards because

x∗2 =X2 − ε2. The better y is in the second attribute, the worse x is in the second attribute in the agent’s

posterior belief.

14 Similarly, Y1|X,Y = y∗1 , and Y2|X,Y ∼N
(
1
3
(2Y2−X2),

1
3

)
.
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3.2. Violation of Weak Stochastic Transitivity
Weak stochastic transitivity refers to the postulate that if C(x,{x,y})≥ 0.5 and C(y,{y,z})≥ 0.5, then

C(x,{x,z})≥ 0.5. Early evidence of its violation can be found in Tversky (1969), and more recent evidence

in Rieskamp et al. (2006). They find that weak transitivity can be violated when there is no clear dominance

among x,y,z in attributes, which we illustrate in the proposition below.

In our model, intransitivity results from the crossing of stochastic indifference curves. Due to the ran-

domness ε in the information, the choice between any two objects x and y depends on their attribute levels

x∗,y∗ and the realization of ε. Hence, given their attribute levels, we can determine the probability of choice,

C(x,{x,y}), from the distribution of ε. We say that the agent is stochastically indifferent between x and y

(written x∼ y) if

C(x,{x,y}) = 0.5.

Similarly, the stochastic indifference curve for x is the set of alternatives to which the agent is stochastically

indifferent relative to x. In the space of attributes, this set of alternatives corresponds to the following set of

attributes {y∗ ∈R2|x∼ y}.
Consider two alternatives x,y such that x∗1 > y∗1 and y∗2 >x∗2. When is x chosen over y? Since the agent is

Bayesian, she chooses xwhenever the posterior expected utility of x is greater than that of y. In our notation,

the agent’s posterior beliefs about x∗ and y∗ are the random variables X|X,Y and Y|X,Y respectively. So

x is chosen over y if and only if

E[u(X )|X,Y ]>E[u(Y)|X,Y ].

Substituting the posterior into the expected utility formula gives that x is chosen over y if and only if

E[u(X )|X,Y ] =−e−3x
∗
1 − e−(2X2−Y2)+3/2 >−e−3y

∗
1 − e−(2Y2−X2)+3/2 =E[u(Y)|X,Y ].15

To obtain the choice probability, substitute X −x∗ = Y −y∗ = ε to obtain the equivalent inequality

−3

2
+ ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x

∗
2 − ex∗2−2y∗2

)
>−ε2.

Since ε2 ∼N (0,1), the choice probability can be expressed using the normal c.d.f Φ,

C(x,{x,y}) = Φ

(
−3

2
+ ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x

∗
2 − ex∗2−2y∗2

))
.

For interpretation, first recall that x∗1 > y∗1 and y∗2 >x∗2. Therefore, both e−3y
∗
1 −e−3x∗1 and ey∗2−2x∗2 −ex∗2−2y∗2

are positive. Moreover, since both Φ and ln are increasing functions, the choice probability is increasing

in x∗1 and x∗2 and decreasing in y∗1 and y∗2 . Intuitively, the agent is more likely to choose x if the hedonic

attribute levels of x improve and is less so if the hedonic attributes of y become more desirable.16

15 The expected utilities above can be understood as follow. In E[u(X )|X,Y ] =−e−3x∗1 − e−(2X2−Y2)+3/2, the utility from the
first attribute is clear due to perfect perception. We have mentioned that the contrast effect influences perception in the second
attribute, and hence also the expected utility. The better Y2 is, the smaller the expected utility for x. The constant in the exponent
of the second term comes from the uncertainty. Because X2|X,Y is normally distributed, e−3X2 is log-normal, and its expectation
involves a constant from the variance of X2|X,Y .

16We show that if x∗1 > y∗1 and y∗2 >x∗2 do not hold, the dominating option is chosen with probability 1 in the next section.
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Empirically, intransitivity can happen when the difference is easier to

discriminate in attribute one, and harder in attribute two (Tversky 1969,

Leland 1994). I.e. if the difference in attribute two is not large enough

to be “consequential”, individuals choose the option higher in attribute

one. However, individuals choose the option higher in attribute two if

its difference is large enough.

In our model, such observation can happen locally near y as shown

by the indifference curves of y (dashed) and of x (solid). For options

slightly worse than y in attribute one, a large difference in attribute two

is needed for them to compare favourably to y. And for options (slightly)

better than y in attribute one, also a sizable difference in attribute two

of approximately y∗2−x∗2 is needed to compare unfavourably to y. Now

that z∗2 −x∗2 > y∗2 −x∗2 is more than enough, x compares unfavourably

to z even though x∗1 is mucb better than z∗1 .
Figure 1 Crossing Stochastic Indifference Curves

The indifference curve can be traced out using the definition C(x,{x,y}) = 0.5. Because Φ(0) = 0.5, we

have x∼ y if and only if

0 =−3

2
+ ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x

∗
2 − ex∗2−2y∗2

)
.

The agent is stochastically indifferent between any x and y with attributes satisfying the above equation.

Generically, if x ∼ y, their indifference curves cross. For illustration, we let x∗ = (3,0) and y∗ =

(3− 1
3

ln(1−e9/2 +e27/2),3) and check that x∼ y. As shown in Figure 1, the red dots are the corresponding

hedonic attribute levels, and the indifference curve of x is the solid curve, whereas that of y is dashed. The

two curves intersect at x∗ and y∗. The curves are indistinguishable for large values in the first attribute.

Because the curves are distinct, intransitivity can occur when we consider any z with attributes in the

shaded area. As in Figure 1, z∗ is below the y-curve and above the x-curve. So C(y,{y,z}) > 0.5 and

C(x,{x,z}) < 0.5. However, as can be easily seen, slightly improving x∗ in either attribute will cause

C(x,{x,y})> 0.5, thereby strictly violating weak transitivity. The above analysis is a proof of the following

existence result.

Proposition 1. Suppose there is imperfect perception of one of the attributes. There is a normal-Bayesian

agent with a standard preference that is intransitive over x, y, and z for some x∗1 > y∗1 > z∗1 and z∗2 > y∗2 >x∗2.

In Section 4, we show that intransitivity cannot occur when there is a dominance relationship between the

alternatives in terms of attributes.

3.3. Joint-Separate Evaluation Reversal
This effect refers to the reversal of the evaluations of alternatives in two contexts. In an experiment of Hsee

(1996), the subjects (as company owners) were asked for valuations in terms of willingness to pay to hire
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different job candidates as programmers. Candidate x had a college GPA of 4.9 out of 5 and had written

10 programs in the computer language KY. Candidate y had a GPA of 3.0 from the same school, and had

written 70 programs in the same language. When the subjects were asked to evaluate x alone, the average

valuation was 32.7k dollars in salary; when asked to evaluate y alone, the average valuation was 26.8k.

However, when the two candidates were presented together, the evaluations reversed. The average valuation

for x in the presence of y became 31.2k, less than the new valuation of 33.2k for y. With an abuse of

notation, we denote by $(x) and $(y) the valuation or the average willingness to pay for x and y in dollars,

and denote by $(x|x,y) the average valuation for x in the presence of y, and $(y|x,y) for y in the presence

of x. A decision maker is said to display j-s reversal if there exist x,y such that both $(x) > $(y) and

$(x|x,y)< $(y|x,y) holds.

In the experiment, the two attributes are GPA and programming experience. While GPA (scaled out of

5) is easy to interpret, programming experience is hard. Although programming experience is explicitly

measured in the number of programs written, it is not clear how advanced the computer language KY is

or how difficult it is to write programs in it. The subjects as “company owners” may not have been experts

in programming, and may have been uncertain of their subjective interpretations. Hence, it is reasonable to

model programming experience with imperfect perception.

To show the existence of reversal in our model, we need to find a pair of x and y such that x∗1 > y∗1 and

x∗2 < y∗2 , and that $(x)> $(y) and $(x|x,y)< $(y|x,y) hold simultaneously. In this subsection, we use

the average posterior expected utility as a proxy for average willingness to pay. That is, $(x) is understood

as the average posterior expected utility of x in {x}, $(y) is that of y in {y}, and $(x|x,y), $(y|x,y) that

of x and of y in {x,y} respectively.

When there is only one option, the posterior is based only on its own signal. For noiseless perception,

X1|X = x∗1. The noisy perception has the Bayesian posterior X2|X ∼ N ( 1
2
X2,

1
2
). Hence the average

posterior expected utility is

$(x) :=EX [EX2 [−e−3x
∗
1 − e−3X2 |X]] =−e−3x

∗
1 − e− 3

2x
∗
2+

27
8 .17

From a similar analysis in the previous subsection, when there are two options, we obtain

$(x|x,y) :=EX,Y [EX2 [−e−3x
∗
1 − e−3X2 |X,Y ]] =−e−3x

∗
1 − e−(2x

∗
2−y

∗
2)+2.

Additionally, an analogous expression holds for $(y|x,y). The two inequalities $(x)> $(y) and $(x|x,y)<

$(y|x,y) are then {
−e−3x∗1 − e− 3

2x
∗
2+

27
8 >−e−3y∗1 − e− 3

2y
∗
2+

27
8

−e−3x∗1 − e−(2x∗2−y∗2)+2 <−e−3y∗1 − e−(2y∗2−x∗2)+2.

17A similar expression holds for y.
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There are many pairs of alternatives that satisfy both inequalities. For illustration, let x∗ be (3,0). Figure 2

plots the shaded region where both inequalities are satisfied. The dashed curve is the boundary defined by

the first inequality above, and the solid curve is the boundary defined by the second. Any y with attributes

y∗ in the shaded region is an example of the desired reversal.

Figure 2 Joint-Separate Evaluation Reversal

Empirically, j-s reversal can be observed if attribute one is easier to evaluate than attribute two (Hsee et al. 1999). In

separate evaluation, this attribute one primarily determines the evaluation outcome. In a joint evaluation, comparison

allows better evaluation of the attribute two, increasing its impact on the evaluation outcome, leading to the reversal.

In our model, this observation can be interpreted as the case where attribute one is perceived with less noise than

attribute two. The figure indicates the equi-value curve of x in separate evaluation (dashed), and that in joint evaluation

(solid). When the difference x∗1− y∗1 is significant enough, x is easily better valued in separate evaluation, even for y

with rather large y∗2 in the shaded area. However, in joint evaluation, attribute two is better valued and hence better

substitutes for attribute one, as illustrated by the flatter solid curve. So a large enough y∗2 is enough to compensate for

the difference in x∗1− y∗1, and overall y becomes better valued in joint evaluation (i.e. being above the solid cuve).

The mechanism that causes this reversal is shown in Figure 2. A y that is low in the first attribute easily

satisfies $(y)< $(x) in separate evaluations. Because the utility function is concave and perception is noisy,

a strong y∗2 attribute cannot effectively increase the overall evaluation. However, in a joint evaluation, there

is a clear contrast in the second attribute for which x∗2 < y∗2 . In comparison, X|X,Y is perceived as much

worse, and Y|X,Y much better, resulting in the reversal. The previous calculation proves the following

result.
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Proposition 2. Suppose there is imperfect perception of one of the attributes. There is a normal-Bayesian

agent with a standard preference who displays j-s reversal over x and y for some x∗1 > y∗1 and x∗2 < y∗2 .

3.4. The Compromise Effect

The compromise effect involves choice problems over two and three options. As in Figure 3, suppose there

is a binary choice problem with options x,y where x is better than y in the first attribute but y is better in

the second. The compromise effect (Simonson (1989)) refers to the effect of introducing a third option z in

or near the region C where z∗ is extremely favorable in the first attribute but extremely unfavorable in the

second attribute. Empirically, at the introduction of z, subjects are generally led to choose the “compromise

option” x, increasing its choice frequency. Mathematically, let the initial choice set be {x,y} and the

extended choice set be {x,y,z}. We define the compromise effect to be C(x,{x,y,z})>C(x,{x,y}) for

some z∗1 >x∗1 > y∗1 and y∗2 >x∗2 > z∗2 .

Let Pr denote the probability measure for ε. We have seen previously that

C(x,{x,y}) = Pr (E[u(X )|X,Y ]>E[u(Y)|X,Y ]) = Pr

(
ε2 >

3

2
− ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x

∗
2 − ex∗2−2y∗2

))
, (1)

Similarly, we can also express the ternary probability as

C(x,{x,y,z})

=Pr
({

E[u(X )|X,Y,Z]>E[u(Y)|X,Y,Z]
}
∩
{
E[u(X )|X,Y,Z]>E[u(Z)|X,Y,Z]

})
,

where the first term in the intersection is the event that x is perceived to be better than y,

{E[u(X )|X,Y,Z]>E[u(Y)|X,Y,Z]}= {ε2 >
3

2
− 4

3
ln

(
(e−3y

∗
1 − e−3x∗1)

e−
3
4 (3x

∗
2−y

∗
2−z

∗
2 )− e− 3

4 (3y
∗
2−x

∗
2−z

∗
2 )

)
}, (2)

and the second is the event that x is perceived to be better than z,

{E[u(X )|X,Y,Z]>E[u(Z)|X,Y,Z]}= {ε2 <
3

2
− 4

3
ln

(
e−3x

∗
1 − e−3z∗1

e−
3
4 (3z

∗
2−x

∗
2−y

∗
2)− e− 3

4 (3x
∗
2−y

∗
2−z

∗
2 )

)
}. (3)

In these two events, both fractions inside the logarithm are positive because z∗1 >x∗1 > y∗1 and y∗2 >x∗2 > z∗2 .

It is clear that both sets are monotonic in the attributes of x; the better the attributes of x are, the larger the

probability that x is the most preferred. Through a similar rationale, it is intuitive to see in Equation (3) that

the event that x is preferred to z is monotonically decreasing in z’s attributes.

More subtle is the influence of the attributes of z on the preference between x and y. From Equation (2), it

is clear that the first attribute of z∗1 does not affect the preference between x and y, because the first attribute

is perceived noiselessly for all. The second attribute is not. The (main component of the) perceived second

attribute of x is 3x∗2− y∗2 − z∗2 .18 Hence the term −e−
3
4 (3x

∗
2−y

∗
2−z

∗
2 ) is (the main component of) the posterior

18 This can be seen in the fact that the posterior belief is X2 ∼N ( 1
4
(3X2−Y2−Z2),

1
4
).
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utility of x from the second attribute. A weak attribute level for z∗2 contrasts with that of x, increasing x’s

perceived level and its posterior utility level. Therefore, x appears to be more appealing in the context of

an undesirable z. Similarly, such an undesirable z also increases the posterior utility of y. However, since

y∗2 > x∗2, y is more saturated than x in the second attribute. Hence, the increase in the perceived levels

benefits x more. Mathematically, both the posterior utility of y and of x from the second attribute increase

as z∗2 decreases, but their gap

e−
3
4 (3x

∗
2−y

∗
2−z

∗
2 )− e− 3

4 (3y
∗
2−x

∗
2−z

∗
2 ) =− e− 3

4 (3y
∗
2−x

∗
2−z

∗
2 )−

(
−e− 3

4 (3x
∗
2−y

∗
2−z

∗
2 )
)

=
(
−e− 3

4 (3y
∗
2−x

∗
2)− (−e− 3

4 (3x
∗
2−y

∗
2))
)

exp(
3

4
z∗2)

decreases. Therefore, from Equation (2), a low z∗2 benefits x more, causing x to be preferred to y.

To show that the compromise effect occurs, we take the limit as z∗1 → x∗1 from the right

and see from Equation (3) that x is perceived to be better than z with probability approach-

ing 1; i.e., Pr
({

E[u(X )|X,Y,Z]>E[u(Z)|X,Y,Z]
})
→ 1 as z∗1 ↘ x∗1. Moreover, for a small

enough z∗2 , the event in Equation (2) becomes a superset of the event in Equation (1);

i.e., Pr
({

E[u(X )|X,Y,Z]>E[u(Y)|X,Y,Z]
})

> C(x,{x,y}) for a small enough z∗2 . Therefore,

C(x,{x,y,z})>C(x,{x,y}) for inferior enough z. We have just proved the following result.

Proposition 3. Assume the parametrization in this section. For any x,y with x∗1 > y∗1 and x∗2 < y∗2 , there

exists a δ > 0 and aD ∈R such that for all z with z∗1 −x∗1 ∈ (0, δ) and z∗2 <D, the compromise effect holds.

The result above identifies an important distinction between our model and a large class of models that

satisfy monotonicity (also called regularity). This includes the class of all random utility models (see e.g.,

Block and Marschak (1960) and Falmagne (1978) and section 5 of Rieskamp et al. (2006)). In the random

utility framework, the utility of the options x,y,z are the random variables Ux,Uy,Uz, i.e., measurable

functions from a probability space to R. The decision maker chooses x if and only if the event {Ux >

Uy and Ux >Uz} is realized. A very general random utility model allows Ux,Uy, and Uz to be correlated

in arbitrary ways. Nonetheless for a random utility model, it always holds that

{Ux >Uy} ⊇ {Ux >Uy and Ux >Uz}, and hence C(x,{x,y})≥C(x,{x,y,z}).

According to Proposition 3, our model directly violates this property, and hence, it cannot be reinterpreted

as a random utility model.

3.5. Remarks on the Parametric Model

The above examples illustrate how intransitivity, j-s reversals and the compromise effect can be explained by

the parametric model when some attributes are subject to imperfect perception. Further derivation reveals

that, for the same model, these effects can occur under a range of budget sets that are expected from
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Table 1 Some choice sets that correspond to some choice effects observed in the behavioral literature.

Observed patterns Some consistent
x and y Corresponding empirical interpretations

Intransitivity: there is a
z with z∗1 < y∗1 < x∗1
and z∗2 > y∗2 > x∗2 ,
so that C(x,{x,y}) ≥
.5, C(y,{y,z}) > .5 and
C(z,{z,x})> .5.

0<x∗1;

−3

2
≈ y∗1 ;

0≈ x∗2;
x∗2 < y

∗
2 ≤ 3.

Between x,y, a smaller x∗1 − y∗1 than y∗2 − x∗2 is enough for
C(x,{x,y})≥ 1

2
. And between y,z, a smaller y∗1 − z∗1 than z∗2 −

y∗2 is enough forC(y,{y,z})> 1
2
. However, betweenx,z, z∗2−x∗2

is now large enough to be consequential. SoC(z,{z,x})> 1
2
.This

matches the empirical pattern that a small difference in attribute
one is decisive if the difference in attribute two is small. Attribute
two is decisive when its difference is large enough (Tversky 1969,
Leland 1994).

J-s reversal: for some x,y
where x∗1 > y∗1 , x∗2 < y∗2 , it
holds that $(x)> $(y) in
a separate evaluation, and
$(x|x,y)< $(y|x,y) in a
joint evaluation.

0<x∗1;

y∗1 <−
6

5
;

x∗2 ≈ 0;

−3y∗1 < y
∗
2 .

Here, attribute one is perceived noiselessly but attribute two is
not. Since the better perceived attribute is easier to evaluate, hav-
ing a smaller x∗1 − y∗1 than y∗2 − x∗2 can lead to $(x) > $(y) in
separate evaluations. However, in joint evaluations, the compari-
son improves the perception of attribute two. So a large enough
y∗2 − x∗2 can reverse the evaluations and $(y|x,y) > $(x|x,y).
This matches the empirical pattern termed “evaluability hypoth-
esis” in (Hsee et al. 1999).

Compromise Effect: there
is a z with y∗1 < x∗1 <
z∗1 and y∗2 > x∗2 > z∗2
so that C(x,{x,y}) <
C(x,{x,y,z})

y∗1 <x
∗
1;

x∗2 < y
∗
2 .

As in the model, when x is better than y in attribute one and y
is better in attribute two, introducing an option z that is best in
attribute one and worst in attribute two makes x a compromise.
This can increase the choice probability of x (Simonson 1989).

the behavioral literature. Table 1 summarizes some of these budget sets and how they can correspond to

observations from the behavioral literature.

In addition to explaining the empirical observations, our parametric model can be used to estimate

preferences and then to predict choice probabilities for new choice sets. For example, let the utility function

be additively exponential u(x) := u(x1, x2) = −eγx1 − eρx2 where γ, ρ < 0 are preference parameters.

The noise is ε∼N
(

0,

[
1/t21 0

0 1/t22

])
with parameters t1, t2 ∈ (0,∞], one of which is potentially infinite.

Under this parametrization, the parameters can be estimated easily from choice data. For example, in our

parametrization, the choice probability for any binary problem is given analytically in Lemma 1.

Lemma 1. For any x,y where x∗1 > y∗1 and y∗2 > x∗2, the parametric model in this subsection gives

C(x,{x,y}) = Φ(θ(γ, ρ,x∗,y∗, t)), where Φ is the standard normal c.d.f. and θ(γ, ρ,x∗,y∗, t) is defined

as

θ :=
1√(

ρ
√
t2

2+t22

)2

+
(
γ
√
t1

2+t21

)2

 γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ

(t21+1)y∗1−x
∗
1

2+t21

)
− exp

(
γ

(t21+1)x∗1−y
∗
1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y

∗
2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x

∗
2

2+t22

)
 .
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When an attribute becomes noiselessly perceptible (i.e. t1→∞), the above Lemma reduces to Equation

1. As seen previously, an x with better attributes results in a higher θ and hence higher C(x,{x,y}), and

vice versa. Moreover, because x∗1 > y∗1 , and γ is the preference parameter in the first attribute, a larger γ2

implies that the first attribute is more decisive, and hence the agent is more likely to choose x.

As the Lemma specifies the choice probabilities in terms of parameters, it can be used to estimate

exponential utility functions when there are observations from different menus. After the parameters are

estimated, the model can be used to predict choice probabilities for new menus. When doing so, we adopt

an implicit assumption similar to Koszegi and Szeidl (2013) that to maintain empirical identifiability and

avoid excessive degrees of freedom, the definitions and measurements of the attributes must be determined

before fitting the model to data. They should not be free parameters but part of the data that the model seeks

to explain.19

Although the expression in the Lemma can be useful for experimenters, the agent in the model does

not evaluate this complicated algebra before making her choice. She simply chooses the choice item that

maximizes her expected utility while being unaware of the choice probabilities her actions generate.

4. General Results
The previous section shows that one simple parametric setting can explain and predict several contextual

effects. These results are not outcomes of parametric flexibility. In contrast, the next subsection shows that

the model is robust in the sense that contextual effects will always occur in some correctly designed choice

problems. In other words, there is no need to use a different set of parameters to explain each context effect.

Apart from the correctly designed choice problems, contextual effects are rarely observed in many other

choice problems. There, the observed choices are usually more “rational”. Subsection 4.2 shows that this is

in accordance with our model. The agent’s choice conforms to classical choice theory for a class of choice

problems in which contextual effects are not empirically observed. We then present some intuitive regularity

conditions that our model always satisfies.

4.1. The Decoy Choice Pattern

Section 3.4 shows that the model accounts for the compromise effect. Through a similar mechanism, our

model also captures two other effects in Figure 3.20 The phantom decoy effect (Pratkanis and Farquhar 1992)

occurs in situations in which z is positioned near the area P . The phantom alternative is better than x in the

19While it is easier to follow this procedure in marketing experiments in which the attributes of each object are specified by the
experimenter, it is sometimes difficult to include other relevant attributes in real life decision-making processes. For example, when
shopping (online or in person), individuals may base their decisions on attributes that are not listed on the product descriptions. For
instance, decisions may be made based on the retailer’s customer service, which is usually not listed on product labels. Hence it is
difficult to account for these influences.

20Here, we omit the formal proofs in the interest of space. The proofs are similar to the intuitive argument in the apartment hunting
example from the introduction. By looking at the contrast effect in one of the attributes, the new option z changes the perceptions
of x and y in that attribute and affects the relative expected utility.
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first attribute and no worse than x in the second. Additionally, it is worse than y in the second attribute. In

experiments, the subjects are told that such a z is unavailable; hence, the subject has to choose from {x,y}.
Empirically, the phantom decoy increases the frequency of choosing x.21 The attraction effect (Huber et al.

1982) corresponds to the effect of introducing a third option z in or near the regionA in Figure 3. In general,

z needs to be inferior to x in the second attribute, and no better in the first. In addition, z needs to be better

than y in the first attribute. Empirically, such a third option itself is rarely chosen but increases the choice

frequency of x. Both effects violate monotonicity.

Because our model predicts these three effects through a similar channel, it suggests that there could be

some commonality among the effects, as argued by Highhouse (1996). To summarize, start with a binary

choice problem in whichx is better thany in the first attribute buty is better in the second, as shown in Figure

3. A third object z in the lower right corner of Figure 3 generally increases the choice probability of x. Due

to symmetry, it is also true empirically that if, instead of z, a third objectw lies in the upper left corner of the

same figure, the choice probability of y will increase (i.e., there will be a compromise effect where y is the

compromise option). These empirical effects share the common feature that z and w are either unavailable

(phantom decoys) or rarely chosen (as in the compromise effect or attraction effect). Therefore, one can

reasonably infer that both the attraction effect and the compromise effect remain qualitatively unchanged

when the third option is unavailable. To conceptualize these observations, there exist somew and z for which

the difference z∗ −w∗ points towards the lower-right half plane, such that the unavailable third option w

increases the choice probability of y whereas the unavailable third option z increases the choice probability

of x. We call this comparative statics the decoy choice pattern.

Definition 1. A choice behavior is said to display the decoy choice pattern if there exists a vector ∆∈R2

with ∆1 > ∆2, such that for any x,y with attributes in R2 satisfying x∗1 > y∗1 , x∗2 < y∗2 the inequality

C(x,{x,y, (z)})>C(x,{x,y, (w)}) holds whenever z∗ =w∗+λ∆ for some λ> 0.

Our model predicts the decoy choice pattern under the general class of preferences and prior-signal

distributions as described in Section 2.

Theorem 1. Any normal-Bayesian agent with a standard preference and imperfect perception displays

the decoy choice pattern.

Observe that Theorem 1 is a sufficiency result. Intuitively, it states that for some z∗ to the right or to the

bottom of w∗, such a z affects the choice probability of x positively compared to w. Another interesting

implication of the theorem is that the attraction effect and the compromise effect should still exist even when

z is a “phantom” option. These predictions are possibly quantitatively too strong in reality but can still be

qualitatively reasonable since z is rarely chosen in experiments. This is a prediction unique to our model, as

other models usually do not consider phantom options.

21 See e.g. Pratkanis and Farquhar (1992), Highhouse (1996), Pettibone and Wedell (2000), Pettibone and Wedell (2007) and
Hedgcock et al. (2009).
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Figure 3 Areas for the phantom decoy effect (P ), the compromise effect (C) and the attraction effect (A)

4.2. Choice under Dominance

We have seen previously that when there is a trade-off between alternatives — i.e., some alternatives are

better in the first attribute while others are better in the second — contextual choices can arise in the model.

A natural question is what the model predicts when such a trade-off is absent. Intuitively, if we are given

two alternatives x and z where z∗ > x∗, a rational agent should always choose z due to the monotonicity of

the utility function.22 The prediction of our model fits this intuition. Since the error ε in perception is the

same for both x and z, the perturbed signal X = ε+ x∗ and Z = ε+ z∗ preserves the inequality: Z >X .

The Bayesian agent in our model can hence correctly infer the inequality and choose optimally.

Theorem 2. For any {x,z} with x∗,z∗ ∈ R2, a normal-Bayesian agent with standard preference and

imperfect perception chooses z with probability 1 if z∗ > x∗.

It is clear that the above theorem also predicts the following intuitive choice effect described and observed

in Tversky (1972) and Tversky and Russo (1969). Consider an individual who is choosing between a trip

22 The vector inequality z∗ > x∗ means z∗1 ≥ x∗1 and z∗2 ≥ x∗2 with at least one inequality being strict.
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to Paris (x) and a trip to Rome (y). If she is interested in seeing both places and does not have a strong

preference for one over the other, her choice probability for x would be roughly 1/2. Now if we offer the

individual a new choice problem with two alternatives, a trip to Paris (x) and a trip to Paris plus a $5 bonus

(z), he would not hesitate to choose z with the extra five dollars. In other words, choosing z over x is of

probability ≈ 1. However, if we offer her a third choice problem that consists of y and z, it is intuitive that

the choice probability for either one will still be roughly 1/2.

Another implication of the above theorem is that transitivity holds with overwhelming probability among

options that dominate each other. Therefore, one prediction of our model is that violation of weak stochastic

transitivity can happen only when the options do not dominate each other. Likewise, our model also predicts

that contextual effects do not occur when there is a relationship of dominance in the attributes among all the

alternatives.

The proof of the following result is immediate.

Corollary 1. Suppose x,y,z have attributes x∗ > y∗ > z∗, then 1 = C(x,{x,y}) = C(y,{y,z}) =

C(x,{x,z})> 1/2.

When there is only one attribute, the assumption of this Corollary holds. Therefore we predict that contextual

effects only occur when there are two or more attributes.

Theorem 2 can also be generalized to the following statement. When S = {x1, . . . ,xn} is the choice

set involving multiple options, if xi is dominated in the set S, then C(xi, S) = 0. In other words, objects

are chosen with positive probability only when they are on the “attribute possibility frontier”. This is a

desirable regularity condition that our model satisfies, and it rules out many other types of irregular choice

behaviors.23

4.3. Relaxing the Assumption of Perfect Correlations

Imperfect perception assumes that the signals across options have the same noise. In other words, the noise

is perfectly correlated across the alternatives. The strength of this assumption simplifies the notation and

derivations. However, it is not necessary and can be weakened. For example, when the noise is positively

correlated across options, the quantitative properties of our model still hold approximately. In this case, from

the decision maker’s perspective, it means that she does not have to believe that the noise is identical across

options. It suffices for her to believe that only a component of the noise is common, so that the noise is not

too different across alternatives.

For instance, when there are alternatives {x,y} with signals X and Y , let the noise be εx = X − x∗

and εy = Y − y∗. Let us use µ to denote the posterior belief of (X ,Y)|X,Y when the noise is perfectly

correlated, i.e. εx = εy. Similarly, µa is used to denote the posterior belief when perfect correlation does

23 It is also one of the distinctions between our model and Natenzon (2019). In his model, a dominated object x with x∗ < y∗ can
still be chosen with a probability significantly greater than 0.
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not hold. Suppose that under belief µ, the agent chooses x, i.e., Eµ[u(X )]> Eµ[u(Y)]. Note that when µa
is close enough to µ, it also holds that Eµa [u(X )] > Eµa [u(Y)] and so x is also chosen under belief µa.

Therefore, due to this continuity, one can locally relax the assumption and allow εx 6= εy, and at the same

time the resulting µa would be close enough to µ for the model predictions to be quantitatively similar.

Formally, the following convergence result shows that when the correlation across alternatives is high

enough, the posterior µa is close enough to µ. For commonly used utility functions, such closeness is

sufficient to maintain the choice decisions in a given problem.

Proposition 4. Let the prior for each option be N (0,Ω). For any n options with realized signals

X1, . . . ,Xn, let the noise for each signal be εi. Suppose (ε1, . . . , εn)′ ∼N (0,Σa) for some positive definite

Σa, and the resulting posterior belief be µa. Denote by Σ the 2n× 2n matrix

Σ =

T
−1 T−1 . . . T−1

...
... . . .

...
T−1 T−1 . . . T−1

 ,
and by µ the posterior belief when εi = εj almost surely. Then µa(X i) for each i is normally distributed and

weakly converges to µ(X i) as Σa→Σ.

As seen in Section 2, positively correlated noise is empirically plausible. Therefore, we impose this

assumption as it is theoretically desirable for a relatively restrictive assumption to have strong explanatory

power. However, it is also of natural curiosity to think about other assumptions, such as those of negatively

correlated signals. Because the mathematical nature of negative correlations forbids a direct such general-

ization, we do not extensively explore more exotic generalizations in this paper due to limited scope. The

degree of the negative correlation is limited by the number of signals (and hence the number of options) at

hand.When there are two signalsX and Y , they can be perfectly negatively correlated, or corr(X,Y ) =−1.

When there are three signals, X , Y , and Z, if corr(X,Y ) = −1 and corr(Y,Z) = −1, then it implies

corr(X,Z) = 1. If they all have to be negatively correlated, the possible limit is corr(X,Y ) = corr(X,Z) =

corr(Y,Z) =−1/2. As the number of signals increases, the negative correlation between the signals has

to diminish to zero. If we want to maintain, as in our model, that the joint distribution of (X,Y ) does not

change from choice set to choice set, then a model in which all options have negatively correlated signals is

not feasible.

4.4. A Limiting Noise Structure
As shown in Proposition 3, our model does not satisfy monotonicity, a fundamental property of all random

utility models. Despite this difference, one interesting question is whether such non-monotonic predictions

disappear for some limiting parameters of our model. For example, if the noise in the signal goes to zero,

does our model converge to some well-known model? The following shows that as the noise term becomes

small, our model approximates the well-known conditional probit model of Hausman and Wise (1978).
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Because this conditional probit model can explain the similarity effect, a corollary of this subsection is that

our model can also explain the similarity effect.

Again, we restrict our discussion to exponential utility functions so that u(x1, x2) =−eγx1 − eρx2 . Given

a finite choice set S = {x1, . . .xn}, the posterior belief over the i-th alternative under imperfect perception

is

X i|X1, . . .Xn ∼N

(
(T +nΩ−1)−1

(
TX i +nΩ−1X i−

n∑
j=1

Ω−1Xj

)
, (T +nΩ−1)−1

)
.

When the variance of the noise converges to zero, i.e. T−1→ 0, the posterior belief X i|X1, . . .Xn is

approximately N (X i, T−1) =N (xi∗ + ε,T−1). When the utility function is smooth enough near xi∗, we

approximate the expected utility by using the utility of the expected attributes

E[u(X )|X1, . . .Xn]≈ u(xi∗+ ε)

which is already a random utility model. Under exponential utility, this approximates the Hausman andWise

(1978) model,

u(xi∗+ ε) =−eγ(x
i∗
1 +ε1)− eρ(x

i∗
2 +ε2) ≈ u1(x

i∗
1 ) +u2(x

i∗
2 ) +β1u1(x

i∗
1 ) +β2u2(x

i∗
2 ),

where we have used the first-order approximation of xi∗ with the notation that u1(x1) =−eγx1 , u2(x2) =

−eρx2 and β1 = γε1, β2 = ρε2. It is clear that the form of the approximation coincides with equation (3.6) in

Hausman and Wise (1978).

4.5. The Link with Reference-dependent Theories

Many contextual effects can also be explained with reference-dependent utility models. It is therefore of

interest to explore how our model relates to this class of models. As we take the limit of our prior variance

to zero, the limiting case becomes choice-equivalent to a reference-dependent model.

In the limit as Ω→ 0, direct calculation shows that the limiting posterior becomes a Dirac measure, i.e.

X|X1, . . .Xn =X i− 1
n

∑
xj∈SX

j with probability 1. Hence the utility of xi becomes

u

(
X i− 1

n

∑
xj∈S

Xj

)
= u

(
xi∗+ ε− 1

n

∑
xj∈S

(xj∗+ ε)

)
= u(xi∗− x̄),

where x̄ = 1
n

∑
xj∈S x

j∗. Clearly, this is a reference-dependent utility function in which the reference point

for a choice set S is the average attribute in S. Nonetheless, this limiting reference-dependent utility cannot

be directly applied to explain evaluation outcomes such as j-s reversal. For any two alternatives x and y, the

separate evaluations are equal:

u(x∗− 1

1

∑
x∈{x}

x∗) = u(0) = u(y∗− 1

1

∑
y∈{y}

y∗).
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Therefore, strict evaluation reversals never occur. Similarly, in the reference-dependent model of Tseren-

jigmid (2019), the reference point is the minimum vector of all the attributes, which also normalizes an

object’s utility to u(0) in separate evaluations. Therefore, j-s reversal cannot occur. In general, the decision

maker is equally happy when there is only one alternative available regardless of its attribute levels when

the reference point normalizes it to the origin.

4.6. Comparing with Existing Reference-dependent Theories
4.6.1. Comparing with Koszegi and Rabin (2006)
The model of Koszegi and Rabin (2006) satisfies the property Expansion (defined below) which can be

violated in our model.

Definition 2 (Expansion). If y is chosen in a choice setD, and y is also chosen in a choice setD′, then

y is chosen in D∪D′.
A proof of Koszegi and Rabin (2006) satisfying this property can be found in Proposition 2 and Observation

3 in Freeman (2017). However, Expansion is not qualitatively satisfied by our model and the compromise

effect.

To show this in our setting, we first make the following interpretation: define “y is chosen in a set D”

to be “y is chosen with highest probability in D”.24 Suppose for some x∗1 > y∗1 and x∗2 < y∗2 , both x and

y are chosen in {x,y}. Suppose there is a z that satisfies z∗1 > x∗1 > y∗1 and z∗2 < x∗2 < y∗2 with z∗2 inferior

enough. Our Lemma 1 shows y would be chosen over z in {z,y}. Now Expansion requires that y is chosen

in {x,y,z}= {x,y}∪{z,y}. However, our model allows the compromise effect in which x is chosen over

y in {x,y,z}. Therefore, the property Expansion is not satisfied.

4.6.2. Comparing with Bordalo et al. (2013)
The model of Bordalo et al. (2013) is very general and does not satisfy our Theorem 1. For instance, for

some x and y where x∗1 > y∗1 and x∗2 < y∗2 , letw be an option dominated by both x and y in both attributes.

There exists such aw so that changingw to any other z can only increase the utility of y relative to x. This

violates our Theorem 1 which states that there exists some z that can induce a higher choice probability of

x over y. We provide an explicit example of such violation in Appendix A.5.

4.6.3. Comparing with Ok et al. (2015)
Ok et al. (2015) characterized their reference dependent model in their Theorem 1. And their model

satisfies the property No-Cycle (defined below), which can be violated in our model.

Definition 3 (No-Cycle). For every x,y,z, if x is chosen in {x,y}, and y is chosen in {y,z}, then x

is chosen in {x,z}.
This property is qualitatively violated by our model, as our model allows intransitivity. This can be readily

seen with the interpretation that “y is chosen in a setD” is defined as “y is chosen with highest probability

in D”.

24 It can also be shown under other qualitatively similar definition with small changes to the argument.
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4.6.4. Comparing with Tserenjigmid (2019)

As mentioned in Section 4.5, the model of Tserenjigmid (2019) does not explain the j-s reversal. Tseren-

jigmid (2019) defines the utility of an option x in the choice set D as u(x|D) := f(x∗ − xD) where the

reference point xD := (miny∈D y
∗
1 ,miny∈D y

∗
2), and f is some fixed increasing concave function. Therefore,

for any x, it holds that u(x|{x}) = f(0), and hence the model cannot be applied to explain the j-s reversal.

5. Discussion and Conclusion
This paper presents a choice model with fixed underlying preferences. Through noisy attribute perception,

the model generically predicts several contextual effects for the appropriate choice problems in the attribute

space. The information structure in our model is exogenously assumed to be dependent on the context.

While there are many ways to model general information structures, we adopt one that is minimal with a

rather specific mathematical form for its psychological plausibility and mathematical simplicity. Such an

informational friction generates both benefits and limitations.

The benefits are twofold. First, the informational friction is restrictive: there is a high positive correlation

across alternatives. Although a restrictive assumption generally reduces explanatory power, it can be theoret-

ically desirable when it rules out certain unobserved choice behaviors. For example, we predict the absence

of intransitivity when the alternatives dominates each other in attributes, a feasible outcome that is not

empirically observed. Second, our approach shows that with minimally restrictive informational frictions,

the canonical Bayesian utility maximization can also provide good explanatory power for several contex-

tual effects. This implies that within Bayesian decision theory, each type of choice effect may potentially

correspond to a type of informational friction. This correspondence may be of interest in future research.

Nonetheless, there are also several limitations. This simple friction can be too restrictive in some respects

while being too general in others. Although the model qualitatively matches the phantom decoy effect, it can

be too restrictive since it quantitativelymakes the same prediction for unavailable alternatives as for those that

are in the choice set. For example, it makes the same prediction in choice probabilities for the attraction effect

when the dominated option is present but unavailable. This cannot quantitatively explain the observations

in Sivakumar and Cherian (1995) that the choice probability of the target is significantly reduced following

the removal of the dominated option.25 This limitation comes from the exogenous information structure and

a potential future project is to endogenize the information structure and capture such empirical findings.

At the same time, our model is potentially too general because it does not rule out some unintuitive

predictions. For instance, when the correlations r andR are not restricted, the model permits j-s reversal for

a dominated option. Although x∗ < z∗ implies that $(x|x,z)< $(z|x,z), it does not imply that $(x)< $(z).

This counterintuitive prediction is allowed when the two attributes are negatively correlated in the prior.

25Although the probability does not fully recover to the level when the dominated option was never shown.
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When z∗1 > x∗1 and z∗2 = x∗2, in separate evaluations, Z2|Z can be smaller than X2|X in distribution. When

the agent values attribute two more intensely, the model predicts that $(x)> $(z).

In addition to our explanation, other mechanisms are also likely at play in reality. Imagine a choice

problem with many options; an agent is asked to rank the options or is asked to choose one from each

pair. Our model implies that these two tasks yield consistent outcomes. This is because in our model the

agent always learns all available information in a choice problem, and there is no capacity constraint to her

learning. This prevents our model from explaining some empirical phenomena (such as the choice overload

(Iyengar and Lepper 2000)) in which the learning costs are the main driver. For these choice effects, a more

suitable model would likely cover endogenous attention and information acquisition. See Guo (2016) for

one such model for explaining choice overload.

Appendix A: Proofs

A.1. Proof of Lemma

Proof of Lemma 1 We directly calculate the expected utility

E[u(X )|X,Y ] =E
[
−eγX1 − eρX2 |X,Y

]
=− exp

(
γ

(t21 + 1)X1−Y1

2 + t21
+ γ2 1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)X2−Y2

2 + t22
+ ρ2

1

2(2 + t22)

)
=− exp

(
γ

(t21 + 1)x∗1− y∗1 + t21ε1
2 + t21

+ γ2 1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)x∗2− y∗2 + t22ε2
2 + t22

+ ρ2
1

2(2 + t22)

)
where the second equality is due to the normally distributed exponents. The third equality is due to the identities

x∗+ ε=X , y∗+ ε= Y . Similarly,

E[u(Y)|X,Y ] =− exp

(
γ

(t21 + 1)y∗1 −x∗1 + t21ε1
2 + t21

+ γ2 1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)y∗2 −x∗2 + t22ε2
2 + t22

+ ρ2
1

2(2 + t22)

)
Hence given x∗,y∗ and ε, the agent would choose x over y iff E[u(X )|X,Y ]> E[u(Y)|X,Y ]. Suppose x∗1 > y∗1 and

y∗2 >x
∗
2, then we see that x is chosen over y iff

exp

(
γ2

2(2 + t21)
− ρ2

2(2 + t22)

) exp
(
γ

(t21+1)y∗1−x
∗
1

2+t21

)
− exp

(
γ

(t21+1)x∗1−y
∗
1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y

∗
2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x

∗
2

2+t22

) ≥ exp

(
ρt22ε2
2 + t22

− γt21ε1
2 + t21

)
. (†)

Since x∗1 > y∗1 and y∗2 >x∗2, we can take the natural log on both sides of (†) to obtain the following equivalent condition

γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ

(t21+1)y∗1−x
∗
1

2+t21

)
− exp

(
γ

(t21+1)x∗1−y
∗
1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y

∗
2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x

∗
2

2+t22

)
≥ ρt22ε2

2 + t22
− γt21ε1

2 + t21
.

Note that the RHS follows a normal distribution N
(

0,
(

ρ

2+t22

)2
t2 +

(
γ

2+t21

)2
t1

)
. We can standardize both sides

by multiplying 1/

√(
ρ
√
t2

2+t22

)2
+
(
γ
√
t1

2+t21

)2
. Hence x∗ is chosen over y∗ iff some standard normal random variable Z is

below the threshold θ defined below:

θ(γ, ρ,x∗,y∗, t) :=
1√(

ρ
√
t2

2+t22

)2
+
(
γ
√
t1

2+t21

)2
 γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ

(t21+1)y∗1−x
∗
1

2+t21

)
− exp

(
γ

(t21+1)x∗1−y
∗
1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y

∗
2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x

∗
2

2+t22

)
 .
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A.2. Proof of Theorem 1

Proof of Theorem 1 It suffices to show that under our assumptions, for every realization of ε the following inequality

holds

E[u(X )|X,Y,Z]−E[u(Y)|X,Y,Z]>E[u(X )|X,Y,W ]−E[u(Y)|X,Y,W ].

Conditional on X,Y,W , the posterior for X is

Pr(X|X,Y,W )

∝ exp

(
−X

′Ω−1X
2

)
exp

(
−Y

′Ω−1Y
2

)
exp

(
−W

′Ω−1W
2

)
exp

(
− (X −X )′T (X −X )

2

)
× 1{X−X=Y−Y=W−W}

∝ exp

(
−1

2

[
X ′
(
3Ω−1 +T

)
X − 2

(
TX −Ω−1(Y +W − 2X)

)′X ])
∝ exp

(
−1

2

(
X −

(
3Ω−1 +T

)−1 (
TX −Ω−1(Y +W − 2X)

))′ (
3Ω−1 +T

)(
X −

(
3Ω−1 +T

)−1 (
TX −Ω−1(Y +W − 2X)

)))
So we denote the above posterior distribution of X|X,Y,W by N

(
µ(x∗;y∗,w∗, ε), Ω̂

)
, where

µ(x∗;y∗,w∗, ε) :=
(
3Ω−1 +T

)−1 (
Tx∗+Tε−Ω−1(y∗+w∗− 2x∗)

)
=
(
3Ω−1 +T

)−1 (
TX −Ω−1(Y +W − 2X)

)
,

and Ω̂ :=
(
3Ω−1 +T

)−1
.

Denote the density of X|X,Y,W ∼N (µ, Ω̂) by φ(X −µ, Ω̂). The posterior expected utility is therefore

E[u(X )|X,Y,W ] =

∫
R2

u(X )×φ
(
X −µ(x∗;y∗,w∗, ε), Ω̂

)
dX

=

∫
R2

u(s+µ(x∗;y∗,w∗, ε))×φ
(
s, Ω̂

)
ds.

Similarly,

Y|X,Y,W ∼N
(
µ(y∗;x∗,w∗, ε), Ω̂

)
.

Because

µ(x∗;y∗,w∗, ε) :=Ω̂
(
Tx∗+Tε−Ω−1(y∗+w∗− 2x∗)

)
=µ(y∗;x∗,w∗, ε)− (y∗−x∗),

we have

E[u(Y)|X,Y,W ] =

∫
R2

u(s+ (y∗−x∗) +µ(x∗;y∗,w∗, ε))×φ
(
s, Ω̂

)
ds.

Recall that µ(x∗;y∗,w∗, ε) = Ω̂Tx∗ + Ω̂Tε− Ω̂Ω−1y∗ − Ω̂Ω−1w∗ + 2Ω̂Ω−1x∗. Substituting z∗ := w∗ + ∆ for w∗

we have

E[u(X )|X,Y,Z]−E[u(Y)|X,Y,Z]

=

∫
R2

u(s+µ(x∗;y∗,z∗, ε))×φ
(
s, Ω̂

)
ds−

∫
R2

u(s+ (y∗−x∗) +µ(x∗;y∗,z∗, ε))×φ
(
s, Ω̂

)
ds

=

∫
R2

[
u
(
s+µ(x∗;y∗,w∗, ε)− Ω̂Ω−1∆

)
−u

(
s+ (y∗−x∗) +µ(x∗;y∗,w∗, ε)− Ω̂Ω−1∆

)]
×φ

(
s, Ω̂

)
ds.
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Since u is standard, y∗1 <x∗1, and y∗2 >x∗2, if −Ω̂Ω−1∆∈ (−∞,0)× (0,∞), i.e. the second quadrant, then

u
(
s+µ(x∗;y∗,w∗, ε)− Ω̂Ω−1∆

)
−u

(
s+ (y∗−x∗) +µ(x∗;y∗,w∗, ε)− Ω̂Ω−1∆

)
>u (s+µ(x∗;y∗,w∗, ε))−u (s+ (y∗−x∗) +µ(x∗;y∗,w∗, ε))

for all s and ε. When we integrate out s, we have E[u(X )|X,Y,Z] − E[u(Y)|X,Y,Z] > E[u(X )|X,Y,W ] −

E[u(X )|X,Y,W ] for every realization of ε.

Therefore, one sufficient condition is that−Ω̂Ω−1∆∈ (−∞,0)×(0,∞). If this condition holds,we have−Ω̂Ω−1∆ =

w for some w1 < 0, and w2 > 0. To show the decoy choice pattern, we just need to show that there exists some ∆ with

∆1 >∆2 such that this condition holds.

Recall that we had normalized Ω so that for some r ∈ (−1,1),

Ω =

[
1 r
r 1

]
and the noise has variance

T−1 =

[
1/t21 R/(t1t2)

R/(t1t2) 1/t22

]
.

We can calculate

Ω−1 =

[
1/(1− r2) −r/(1− r2)
−r/(1− r2) 1/(1− r2)

]
and T =

[
t1 0
0 t2

][
1/(1−R2) −R/(1−R2)
−R/(1−R2) 1/(1−R2)

][
t1 0
0 t2

]
;

It follows that

∆ =−ΩΩ̂−1w =−Ω(3Ω−1 +T )w =−(3I + ΩT )w

=−
([

3 0
0 3

]
+

[
1 r
r 1

][
t1 0
0 t2

][
1/(1−R2) −R/(1−R2)
−R/(1−R2) 1/(1−R2)

][
t1 0
0 t2

])[
w1

w2

]
=−

[
3 +

t21−t1t2rR
1−R2

t22r−t1t2R
1−R2

t21r−t1t2R
1−R2 3 +

t22−t1t2rR
1−R2

][
w1

w2

]
Since w1 < 0, and w2 > 0, the sufficient condition holds when ∆ is some positive linear combination of the two

vectors

{
[
3(1−R2) + t21− t1t2rR

t21r− t1t2R

]
,−
[

t22r− t1t2R
3(1−R2) + t22− t1t2rR

]
}.

The decoy choice pattern holds when there exists such a ∆ with ∆1 >∆2. In other words, the decoy choice pattern

holds if 
3(1−R2) + t21− t1t2rR> t21r− t1t2R
or
−(t22r− t1t2R)>−(3(1−R2) + t22− t1t2rR),

⇔


3(1−R2)> (r− 1)(t21 + t1t2R)

or
3(1−R2)> (r− 1)(t22 + t1t2R).

Because r,R ∈ (−1,1) and t1, t2 > 0, it is impossible for both t1 + t2R< 0 and t2 + t1R< 0 to hold simultaneously.

Therefore the decoy choice pattern holds.
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A.3. Proof of Theorem 2

Proof of Theorem 2 As before, we start with the Bayesian posterior

Pr(X|X,Z)∝ exp

(
−X

′Ω−1X
2

)
exp

(
−Z

′Ω−1Z
2

)
exp

(
− (X −X )′T (X −X )

2

)
× 1{X−X=Z−Z}

= exp

(
−1

2

[
X ′
(
2Ω−1 +T

)
X − 2

(
TX −Ω−1(Z −X)

)′X . . .])
∝ exp

(
−1

2

(
X −

(
2Ω−1 +T

)−1 (
TX −Ω−1(Z −X)

))′ (
2Ω−1 +T

)
(X − . . . )

)
Therefore, the posterior inference for x∗ is

X|X,Z ∼N
((

2Ω−1 +T
)−1 (

TX −Ω−1(Z −X)
)
,
(
2Ω−1 +T

)−1)
=N

((
2Ω−1 +T

)−1 (
Tx∗+Tε−Ω−1(z∗−x∗)

)
,
(
2Ω−1 +T

)−1)
:=N

(
µ(x∗;z∗, ε), Ω̂

)
Similarly, Z|X,Z ∼N

(
µ(z∗;x∗, ε), Ω̂

)
. Observe that they have the same variance, and that

µ(z∗;x∗, ε)−µ(x∗;z∗, ε)

=
(
2Ω−1 +T

)−1 (
Tz∗+Tε−Ω−1(x∗− z∗)

)
−
(
2Ω−1 +T

)−1 (
Tx∗+Tε−Ω−1(z∗−x∗)

)
=z∗−x∗ > 0.

Therefore the posterior inference distribution for z∗ is that for x∗ translated by the vector z∗ − x∗ > 0. Since the

standard preference is increasing in both attributes, we have for every ε∈R2

E[u(X )|X,Z]<E[u(Z)|X,Z].

Hence the rational agent chooses z over x with probability 1.

A.4. Proof of Proposition 4

Proof of Proposition 4

Define X̃ = (X1, . . . ,Xn), and X̃ = (X 1, . . . ,X n). Let us use φk(.,A) to denote the density of the k-dimensional

normal distribution N (0,A). Under Σa, the posterior distribution for X1 is

Pr(X 1|X1, . . . ,Xn) =

∫ ∏n

j=1 φ2(X j ,Ω)×φ2n

(
(X̃ −X̃ ),Σa

)
dX 2× · · ·×dX n∫ ∏n

j=1 φ2(X j ,Ω)×φ2n

(
(X̃ −X̃ ),Σa

)
dX̃

It is easy to see this is a normal distribution, which establishes the claim of the normality of the posterior. Let v be any

bounded continuous function. Then

Eµa
[v(X 1)] =

∫
v(X 1)

∏n

j=1 φ2(X j ,Ω)×φ2n

(
(X̃ −X̃ ),Σa

)
dX̃∫ ∏n

j=1 φ2(X j ,Ω)×φ2n

(
(X̃ −X̃ ),Σa

)
dX̃

As Σa→Σ, the measure φ2n

(
(X̃ − X̃),Σa

)
dX̃ weakly converges to

φ2

(
(X 1−X1), T−1

)
×

n∏
i=2

1X i−Xi=X1−X1dX̃ ,
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the measure where εi = εj for all i, j. Therefore, by weak convergence we have

Eµa [v(X 1)]→
∫
v(X 1)

∏n

j=1 φ2(X j ,Ω)×φ2 ((X 1−X1), T−1)×
∏n

i=2 1X i−Xi=X1−X1dX̃∫ ∏n

j=1 φ2(X j ,Ω)×φ2 ((X 1−X1), T−1)×
∏n

i=2 1X i−Xi=X1−X1dX̃
=Eµ[v(X 1)]

as Σa→Σ. This completes the proof.

A.5. Theorem 1 and Bordalo et al. (2013)

The model in Bordalo et al. (2013) is very general and can violate our Theorem 1. In their model, the utility of x out

of the set {x,y,z} is

u(x,{x,y,w}) =


2
δx∗1+x

∗
2

1+δ
, σ(x∗1,

x∗1+y
∗
1+w

∗
1

3
)<σ(x∗2,

x∗2+y
∗
2+w

∗
2

3
);

x∗1 +x∗2 σ(x∗1,
x∗1+y

∗
1+w

∗
1

3
) = σ(x∗2,

x∗2+y
∗
2+w

∗
2

3
);

2
x∗1+δx

∗
2

1+δ
σ(x∗1,

x∗1+y
∗
1+w

∗
1

3
)>σ(x∗2,

x∗2+y
∗
2+w

∗
2

3
),

where δ ∈ (0,1) and σ(a, b) = |a−b|
a+b

. The same formula holds for y and w by interchanging the letters. Consider the

case when y∗ = (12,13), x∗ = (13,12.1), and w∗ = (1,11). Then we have σ(y∗1,
x∗1+y

∗
1+w

∗
1

3
)> σ(y∗2,

x∗2+y
∗
2+w

∗
2

3
) and

σ(x∗1,
x∗1+y

∗
1+w

∗
1

3
)>σ(x∗2,

x∗2+y
∗
2+w

∗
2

3
).

u(y,{x,y,w}) = 2
y∗1 + δy∗2

1 + δ
= 2

12 + δ13

1 + δ
< 2

δ12 + 13

1 + δ
= 2

x∗1 + δx∗2
1 + δ

= u(x,{x,y,w}).

Since the utility of y is smallest possible, and the utility of x is the maximum possible, so the relative utility of x over

y, u(x,{x,y,w})−u(y,{x,y,w}), is at maximum. Therefore, replacingw with any z for which z∗ =w∗+λ∆ can

only reduce the relative utility of x over y, and hence cannot further induce the decision maker to choose x (when z

and w are phantom options). Therefore, this model can violate our Theorem 1. And it does not predict the empirical

findings in Wedell (1991) that when replacing such a w with z for which z∗1 ≈ x∗1 > y∗1 and z∗2 <x∗2 < y∗2 will induces

the decision maker to choose x.
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