Rational Contextual Choices under Imperfect Perception of Attributes

First version Sep 2016, current version Apr 2019
Junnan He
Department of Economics, Washington University in St. Louis, Campus Box 1208, One Brookings Drive, St. Louis, MO 63130-4899, junnan.he@wustl.edu

The classical rational choice theory proposes that preferences are context-independent, e.g. independent of irrelevant alternatives. Empirical choice data, however, display several contextual choice effects that seem inconsistent with rational preferences. We study a choice model with a fixed underlying utility function and explain contextual choices with a novel information friction: the agent’s perception of the options is affected by an attribute-specific noise. Under this friction, the agent learns useful information when she sees more options. Therefore, the agent chooses contextually, exhibiting intransitivity, joint-separate evaluation reversal, attraction effect, compromise effect, similarity effect, and phantom decoy effect. Nonetheless, because the noise is attribute-specific and common across alternatives, the agent’s choice is perfectly rational whenever an option clearly dominates others.

Key words: compromise effect, context effect, imperfect perception, intransitive choices, joint-separate evaluation reversal, phantom decoy effect, rational preferences.

History:

1. Introduction
Classically, rationality is defined by consistency axioms. Under consistency, rational preferences are transitive and independent of contexts, often represented by utility functions. However, empirical research has long found violations of different aspects of consistency. For example, intransitivity was spotted as early as Tversky (1969), and more recent evidence can be found in Rieskamp et al. (2006). Other empirical studies on contextual dependence include Huber et al. (1982), Pratkanis and Farquhar (1992) and Hsee (1996). Here, by context dependence or contextual choices we mean the following type of intuitive observations. In different choice problems involving objects x or y, the choice probabilities of
x and of y differ in such a way that suggests the decision maker evaluates the objects differently. For instance, in Huber et al. (1982) and Pratkanis and Farquhar (1992), experimenters offer the subjects two choice problems. One involves only two options x and y and the other includes a third choice z. They find that the inclusion of z can reverse the relative choice frequency between choosing x and y, even though z itself is rarely chosen (attraction effect) or listed as unavailable (phantom decoy effect). Another example is the joint-separate valuation reversal (henceforth j-s reversal) in Hsee (1996). When the willingness to pay for x or y is elicited separately, x can be valued higher than y, but when elicited together, x becomes inferior to y. Intransitive choices can also be interpreted as a type of contextual dependence.

Within the literature, some contextual choice effects, such as the similarity effect (Tversky and Russo (1969)), attraction effect (Huber et al. (1982)) and compromise effect (Simonson (1989)), can be rationalized as the maximization of a rational preference under informational constraints (see e.g. Hausman and Wise (1978), Wernerfelt (1995), Kamenica (2008), Guo (2016), Natenzon (2017)). However, others such as phantom decoy effect (Pratkanis and Farquhar (1992)), j-s reversal (Hsee (1996)) and stochastic intransitivity (Tversky (1969)) have not yet been rationalized.¹

This paper proposes a model to systematically rationalize and predict the aforementioned empirical findings. In our model, a decision maker maximizes a rational (hence context-independent) preference under the constraint of a novel informational friction. We show that the decision maker generically exhibits both the stochastic intransitivity and the j-s reversal when there are trade-offs between attributes, as observed in Rieskamp et al. (2006). We define the decoy choice pattern, a comparative static that captures the attraction effect, the phantom decoy effect and the compromise effect, and show that in our model, the decoy choice pattern is predicted by one single mechanism.² Instead of flexibly switching parameters to explain different phenomena, our model can explain several contextual effects with one simple parametric value. On the other hand, our model predicts that choices maximize the rational preference when there is a dominating alternative. Therefore, we identify a subclass of problems where the classical rational choice is retained.

¹ The “phantom decoy effect” refers to the observation that an unavailable third option, dominating the target but not the competitor, increases the attractiveness of the target. See evidence in Pratkanis and Farquhar (1992) and later in Highhouse (1996), Pettibone and Wedell (2000), Pettibone and Wedell (2007) and Hedgcock et al. (2009) etc.

² Highhouse (1996) has similarly argued for one mechanism causes the attraction effect and the phantom decoy effect.
He: Rational Contextual Choices
Article submitted to ; manuscript no.

Our novel information friction is that the perception of attributes is noisy. Each option \(x \) has precise attribute levels \(x^* \) over which the agent’s utility function is defined. However, the agent cannot observe these precise attributes, but a noisy signal \(X|x^* \). Conditional on the true attributes, the noisy signals across different alternatives are correlated. Therefore, although the distribution of \(X|x^* \) remains unchanged, the agent makes different inferences about \(x^* \) when she is presented with different alternatives. For example, in the choice problem \(\{x, y\} \), the agent observes the signals \(X, Y \) but not the actual attribute levels \(x^* \) and \(y^* \). She forms a posterior belief, say about \(x^* \), conditional on the signals \(X, Y \). When she faces the choice problem \(\{x, z\} \), the posterior belief about \(x^* \) is conditioned on \(X, Z \). These two posterior beliefs about \(x^* \) are generally different, and so are the posterior expected utilities of \(x \) in \(\{x, y\} \) and in \(\{x, z\} \). Then intuitively, even if the agent is (stochastically) indifferent both in the choice problem \(\{x, y\} \) and in the problem \(\{x, z\} \), she would not be indifferent in \(\{y, z\} \). In other words, the (stochastic) indifference curves can cross, giving rise to intransitivity.

From now on, we assume a type of noise termed imperfect perception of attributes. This noise is specific to each attribute, but not specific to each alternative. In other words, for each attribute, the noise is common across all items. It perturbs the perceived attribute levels of the items while keeping their relative differences unchanged. Under this noisy signal, if the agent over-perceives an attribute in an object, she over-perceives the same attribute in other objects. This noise in the attributes is qualitatively different from a noise in utilities. As shown in Proposition 3, our model does not satisfy monotonicity, and hence cannot be interpreted as any random utility model.

The assumption of imperfect perception is intuitively sensible because correlated signals arise easily in perception tasks. Imagine in choosing apartments, a decision maker prefers rooms with abundant natural light. She visits two apartments on the same day, and sees that apartment \(x \) is brighter than \(y \). Although she does not know how bright the apartments typically are (she does not observe \(x^*, y^* \)), she learns the noisy signals from her visits. Each signal may be inaccurate, but the difference between signals can clearly indicate which room is typically brighter. After all, she is seeing both apartments at roughly the same time, under the same weather. There is a natural common component in the noise of the signals. The same intuition holds in perceiving other attributes such as the noisiness of the neighborhood, the length of commuting time etc.
This type of uncertainty in perception can arise even when the attributes are measured in scientific units, such as megabytes of memory space, lumens of light, and decibels of sound etc. Measurement units can be hard to interpret precisely, and (under-) over-interpreting a unit can lead to (under-) over-perceived attribute levels for all the alternatives. In general, imperfect perception arises whenever the decision making agent believes that there is a common component in the uncertainty in perception. We elaborate further in Section 2.

For a Bayesian agent, this imperfect perception causes a contrast effect in the perception of each attribute. The contrast effect is a well-known psychological phenomenon that refers to the strengthening or weakening of the perception of any attribute when the object is contrasted with surrounding objects of different levels in the same attribute.\(^3\) To illustrate with the apartment example, suppose that the decision maker on the same day also visited another apartment \(z\) that is much brighter than both \(x\) and \(y\). The Bayesian decision maker infers that it is unlikely for any apartment to be so bright on every day, implying an upward bias in the common component of all the signals. Hence after visiting the apartment \(z\), she revises downwards the perceived brightness of \(x\) and \(y\). The judgments about other attributes of the apartments can also be affected similarly. For example, an apartment can be perceived as quieter in the presence of a really noisy one.

When the decision maker’s preference is determined by a single attribute monotonically, this contrast effect is inconsequential: she always chooses to maximize (or minimize) that attribute in the model.\(^4\) However, if her preference involves at least two attributes, a different set of competing options can simultaneously affect the perception of two attributes differently (increase one and decrease another). Hence the same two options can have different posterior expected utilities when contrasted with different sets of alternatives.

The compromise effect is one such example. Suppose in choosing apartments, the decision maker faces a trade-off between natural lighting and quietness. She prefers better lighting as well as a quieter living place. As before, she observes correlated signals \(X\) and \(Y\) in both attributes of the two apartments \(\{x, y\}\). Suppose \(x\) has good natural lighting but is subject to noises from the street, whereas \(y\) has a gloomy interior but is very quiet. Suppose the decision maker is inclined to choose \(y\) between the two. Now introduce a third option \(z\) that is even brighter than \(x\) but is also much noisier. As explained previously,

\(^3\) See e.g. Schwarz and Bless (1992) and Plous (1993) page 38 - 41.

\(^4\) I.e, if the agent only cares about lighting, she always chooses the brightest apartment with certainty.
conditional on X, Y and Z, both the (posterior) perceived brightness levels for x and y are lower than those conditional on only X and Y (the contrast effect in perception of light). And similarly, with the additional signal Z both the (posterior) perceived quietness for x and y increase. Now, reducing the perceived brightness of x and y affects both apartments negatively, but more so for y because of diminishing marginal utility in lighting. And increasing the perceived quietness of x and y affects both apartments positively, but more so for x, due to the diminishing marginal utility in quietness. Consequently, x has a higher expected utility level relative to y after z is introduced.

Besides the assumption of imperfect perception, Bayesian rationality is also an important component of our model. If there is no updating at all, presenting the alternative z will not affect the preference between x and y. We use Bayesian updating because it is the rational benchmark in modeling information and learning. Despite the reliance of our model on Bayesian rationality, we do not claim that in reality people perform sophisticated Bayesian updating and calculate posterior expectations. Instead, we interpret the model as an as-if representation of the decision process. Nonetheless, the analysis of this as-if channel does parallel some intuitive explanations of contextual choices as illustrated above.

We present the general set-up in the Section 2. In section 3, we apply a parametric special case of the model to explain intransitive choices, j-s reversal, and compromise effect in detail. The analysis of the general model is presented in section 4, where we show the decoy choice pattern and the choice for dominating options. Section 5 contains some further discussion. Additional proofs are in the appendix.

1.1. Related Literature

This paper contributes to the literature on rationalizing contextual choices by proposing a new and disciplined informational channel that complements existing explanations.

Our model differs from the class of reference-dependent models where utilities are directly assumed to depend on menus. See e.g. Simonson (1989), Tversky and Simonson (1993), Koszegi and Rabin (2006), Bordalo et al. (2013), Ok et al. (2015) and Tserenjigmid (2016) etc. Due to the lack of a fixed underlying preference, such models cannot be applied in welfare analysis. In contrast, our model contains a rational behavioral benchmark $u(.)$ that can be used to assess welfare, and identify potential mistakes (i.e. failures to maximize $u(.)$) caused by the information frictions.
Our model also differs from the general random utility framework of Block and Marschak (1960) and Falmagne (1978), which includes Thurstone (1927), Luce (1959), Tversky (1972), Hausman and Wise (1978) and more recently, Gul et al. (2014). As detailed in Section 3.3, because random utility models are monotonic, they cannot explain the increase in the absolute choice probability in compromise effect. Since our model can explain this phenomenon (see Proposition 3), it is not a random utility mode.

There are other papers in the literature rationalizing different contextual choices. Wernerfelt (1995) and Kamenica (2008) both study consumer-retailer games where the set of alternatives conveys information in equilibrium. In contrast, our model focuses on a single agent decision environment when market interaction is not of major concern. Our paper is more closely related to Guo (2016) and Natenzon (2017) in this sense, but the information structures differ. Guo (2016) assumes that choice contexts do not provide different information. But because the incentive to acquire information depends on contexts, the agent eventually uses different (acquired) information in decision making. Different from Guo (2016), we do not study a model of information acquisition. Instead, we show how learning under a large family of exogenous information structure can predict several contextual effects. Therefore, our mechanism focuses on scenarios where selectively acquiring information is not the main driver. Natenzon (2017) studies a transitive choice model where the agent learns about the mean utilities from a noisy signal. In his paper, the covariance structure of the noise is used as free parameters to explain data. Different in nature, the uncertainty in our model lies in the more primitive attribute space. As a result, we explain different contextual choices, such as intransitivity, j-s reversal and phantom decoy effects despite our correlation across objects is fixed to perfect correlation.

Most of the models in the literature do not explicitly model attributes, including also the drift diffusion models in neuroscience (see e.g. Ratcliff (1978), Busemeyer and Townsend (1993), Usher and McClelland (2004), Woodford (2014), Fudenberg et al. (2015), and Fehr and Rangel (2011)), and extensions or variations of Luce’s logit model (see e.g. Masatlioglu et al. (2012), Aguiar (2015), Ravid (2015) and Echenique et al. (2015)). In contrast, because we take attributes as model primitives, we have the advantage to make strong natural predictions for clearly dominating alternatives (see Theorem 2).
2. The Model, its Assumptions and Motivations

In the empirical research on contextual choices, choice problems consist of several options, each with a description in *two or more* different attributes. Therefore, we take the primitives of our model to be the attributes of each object. In particular, we use \mathbb{R}^n for $n \geq 2$ to represent the attribute space. The attributes of each item x are represented as a vector $x^* := (x^*_1, \ldots, x^*_n)$ in the space, with each coordinate given by the corresponding attribute level. The vector x^* is not directly observed by the agent. In many of the experiments, contextual choices are observed as long as there are two different attributes. Therefore we restrict our discussion to \mathbb{R}^2 in this paper for mathematical simplicity.\(^5\)

In accordance with the classical theory, the agent is assumed to be rational in two senses. Firstly, she has a context-independent preference over the attribute space that can be represented by a vNM utility function. Following standard assumptions from consumer theory, we assume that all attributes are both goods, so that utility is insatiable along all axes. At the same time, the utility has diminishing returns and there is weak complementarity between attributes. We call a preference *standard* if it displays these properties.

Assumption 1 (Standard Preference). The decision maker’s preference over distributions on \mathbb{R}^2 can be represented by a vNM utility function $u : \mathbb{R}^2 \to \mathbb{R}$ that is differentiable, increasing (i.e. $u_1 > 0, u_2 > 0$), and exhibits decreasing marginal sensitivity (i.e. $u_{11} < 0, u_{22} < 0$) and weak complementarity (i.e. $u_{12} \geq 0$). Any utility function representing a standard preference is called a standard utility function.

Secondly, the agent is Bayesian rational with a prior belief over \mathbb{R}^2. The prior distribution represents the agent's anticipation about the attribute levels before she observes any options. We endow the agent with a normal prior distribution. Without loss of generality, we translate and scale the attribute space such that the prior mean is at the origin and the prior variance is $\Omega := \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}$ for some $r \in (-1, 1)$.\(^6\) By Bayesian rationality, we mean the convention that the agent has a fixed vNM utility $u(\cdot)$ which she tries to maximize under imperfect information. She observes noisy signals, and chooses the option that maximizes posterior expected utility conditional on the signal.\(^7\)

5 The mechanisms for the main theorems can be extended to higher attribute dimensions.

6 Such a correlation can arise when, for example, the two attributes are price and quality. One can interpret $r < 0$ as the agent having a prior belief that a good price is associated with low quality.

7 See e.g. Savage (1954).
ASSUMPTION 2 (Normal-Bayesian Rationality). The decision maker is Bayesian with a normal prior \(N(0, \Omega) \) and maximizes posterior expected utility.

Next, our main assumption proposes that there is noise in the perception of attributes. The noise is specific only to the attributes, and hence is common across alternatives. Let capital letters (i.e. \(X = (X_1, X_2) \)) denote the noisy signal of an object’s attributes. For instance, in the choice set \(\{x, y\} \), the attribute levels \(x^* \) and \(y^* \) are signaled by \(X = x^* + \epsilon \) and \(Y = y^* + \epsilon \) where \(\epsilon \) has the same realization for all objects.\(^8\) Hence the agent perceives better the relative differences in attributes between the items, i.e. \(x^* - y^* = X - Y \), than the the absolute locations \(x^* \) and \(y^* \) in the attribute space. One way to interpret this assumption is that the noise is a random anchoring in attributes. Hence the agent over- or under-perceives (or under-perceives) each attribute the same across all alternatives. Ariely et al. (2003) supports such a form of noise with experimental findings that participants consistently under-perceive (or over-perceive) each attribute across all objects:

"[W]e show that consumers’ absolute valuation of experience goods is surprisingly arbitrary, even under “full information” conditions. However, we also show that consumers’ relative valuations of different amounts of the good appear orderly . . . "

Moreover, Ariely et al. (2003) suggests that even when the attributes are measured in technical units and described numerically, the subjects are not able to perfectly perceive the numerical information. For instance, they find that reading the measured volume of noises in scientific units does not provide any more information about the volume than simply hearing the noises. These findings can be intuitively explained as the decision maker is subjectively uncertain in interpreting scientific units. For instance, a person who is used to seeing temperature in Celsius finds it hard to interpret Fahrenheit. In fact, even in Celsius, the same person’s perception of the numeric temperature is not perfect. As Kamenica (2008) argues, in general “interpreting technical units of quality can be difficult.” Due to such difficulty, precise measurements can only serve as noisy indicators of the attribute levels. Kamenica (2008) also gave the example that in choosing a personal computer, a decision maker usually cannot precisely evaluate a given set of measurements in megahertz, gigabytes or other technical units.

\(^8\) Our model predictions only change marginally if we relax the assumption so that \(X = x^* + \epsilon + \epsilon_x \) where \(\epsilon_x \) is a small i.i.d. noise for each object \(x \).
In general, depending on the decision maker’s intuitive understanding of the technical units, she may under or over-perceive the attribute in all options even if it is described numerically. To further illustrate this point, in our apartment-choice example, suppose the decision maker is also concerned with the safety of the neighborhoods. She can obtain a signal of this attribute by consulting the last-year crime statistics published by the same authority.\(^9\) Even though for each neighborhood, this attribute is measured in simple units as “number of crimes per year per ten thousand people”, it is still a noisy signal from the perspective of the decision maker, because for instance, it is not clear how strict the definition of crime is in this context. The signal can be an exaggeration (understatement) for all neighborhoods if the local authority applies a broader (narrower) definition of crime than she thinks. In general, the channel of imperfect perception arises as long as the decision maker thinks there may be uncertainty in her understanding of the units of measurements. Formally, our imperfect perception assumption follows.

Assumption 3 (Imperfect Perception). For any \(n\) alternatives \(\{x^1, \ldots, x^n\}\) each with attributes \(x^1, \ldots, x^n \in \mathbb{R}^2\), the agent receives signals \(X^1, \ldots, X^n\) where \(X^i - x^i = \epsilon\) for all \(i\). The noise term \(\epsilon \sim \mathcal{N}(0, T^{-1})\) is normal with variance matrix

\[
T^{-1} = \begin{bmatrix}
\frac{1}{t_1^2} & \frac{R}{(t_1 t_2)} \\
\frac{R}{(t_1 t_2)} & \frac{1}{t_2^2}
\end{bmatrix}
\]

for some \(\frac{1}{t_1^2} + \frac{1}{t_2^2} > 0\), and some \(R \in (-1, 1)\).

The usual assumption of normality leads to prior-signal conjugacy. The specification that \(\epsilon\) is common for all \(i\) is a form perfectly correlated noise across objects. If we relax the perfect correlation to high correlations, the model predictions change only marginally because the choice probability is continuous in noise covariances. We allow the standard deviations in attributes to differ as long as one of them is strictly positive (i.e. \(\frac{1}{t_1^2} + \frac{1}{t_2^2} > 0\)) even though one of them can be zero (e.g. \(t_1 = \infty\)). Our assumption also allows the noise across attributes to have a non-zero correlation \(R\).\(^{10}\)

We now summarize some additional notations in the paper. Bold letters (e.g. \(x, y, z\)) denote different alternatives. Letters with an asterisk (e.g. \(x^*, y^*, z^*\)) denote the true attribute levels of an object in \(\mathbb{R}^2\). We denote more than three alternatives with superscripts. Capital letters denote the initial noisy signals. Calligraphic letters (i.e. \(X, Y, Z\))

\(^9\)E.g. local police department and city websites, or the Uniform Crime Reports by FBI in US.\(^{10}\)Such a correlation can arise when attributes are closely related, such as the sugar content and calories in a soft drink, one might expect a correlation in the noise across these attributes.
denote the agent’s posterior beliefs about the true attributes. Subscripts distinguish the respective attribute-dimensions for a given vector. Choice behavior is a function that specifies the choice probability of an object when it is presented with a set of alternatives for which a subset is not available. We use the notation $C(x^l, \{x^1, x^2, \ldots, x^i, (x^{i+1}, \ldots, x^{i+j})\})$ to denote the choice probability of x^l from the set $\{x^1, \ldots, x^i, (x^{i+1}, \ldots, x^{i+j})\}$ in which $(x^{i+1}, \ldots, x^{i+j})$ are unavailable. A $C(\cdot, \cdot)$ that assigns a probability for any x in every nonempty finite set of alternatives S, with any $S' \subset S$ specifying the unavailable objects, is called the choice behavior of an agent. The choice behavior satisfies

$$\sum_{k=1}^{i} C(x^k, \{x^1, x^2, \ldots, x^i, (x^{i+1}, \ldots, x^{i+j})\}) = 1.$$

3. A Parametric Special Case

In this section, we show the existence of stochastic intransitivity, the j-s reversal and the compromise effect with the following parametric setting. The preference is described by a regular exponential utility $u : \mathbb{R}^2 \rightarrow \mathbb{R}$

$$u(x_1, x_2) = -e^{-3x_1} - e^{-3x_2}.$$

The noise structure is simple and one dimensional. The first attribute is perfectly perceived, and noise exists only in the perception of the second. Therefore, the noise has no variance in the first attribute,

$$\epsilon \sim \mathcal{N} \left(0, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

Finally, the agent’s prior is taken to be the standard bivariate normal centered at the origin.

3.1. Violation of Weak Stochastic Transitivity

Weak stochastic transitivity refers to the proposition that if $C(x, \{x, y\}) \geq 0.5$ and $C(y, \{y, z\}) \geq 0.5$, then $C(x, \{x, z\}) \geq 0.5$. Early evidence of its violations can be found in Tversky (1969), and more recently Rieskamp et al. (2006). The papers suggest that weak transitivity can be violated when there is no clear domination among x, y, z. In this subsection, a decision maker is said to display intransitivity if there are x, y, z such that the choice behavior C satisfies $C(x, \{x, y\}) > 0.5$, $C(y, \{y, z\}) > 0.5$, and $C(z, \{x, z\}) > 0.5$. Intransitivity in our model results from crossing of stochastic indifference curves.
Due to the randomness ϵ in the information, the choice between any two objects x and y depends on their fixed attribute levels x^*, y^* and the realization of ϵ. Hence given the attribute levels, we can determine the probability of choice, $C(x, \{x, y\})$, from the distribution of ϵ. We say x is stochastically indifferent to y (writes $x \sim y$) if

$$C(x, \{x, y\}) = 0.5.$$

Similarly, the stochastic indifference curve of x is the set of alternatives that are stochastically indifferent to x. On the space of attributes, this set of alternatives corresponds to the following set of attributes $\{y^* \in \mathbb{R}^2| x \sim y\}$.

Consider two alternatives x, y such that $x_1^* > y_1^*$ and $y_2^* > x_2^*$. When is x chosen over y? Since the agent is Bayesian rational, she chooses x whenever the posterior expected utility of x is greater than that of y. Under the notation, the posterior beliefs about x^* and y^* are respectively the random variables $\mathcal{X}|X,Y$ and $\mathcal{Y}|X,Y$. So x is chosen over y if and only if

$$\mathbb{E}[u(\mathcal{X})|X,Y] > \mathbb{E}[u(\mathcal{Y})|X,Y].$$

We obtain the posterior belief from Bayesian updating, using the fact that $X - x^* = Y - y^*$,

$$\mathcal{X}_1|X,Y = x_1^*, \text{ and } \mathcal{X}_2|X,Y \sim \mathcal{N}\left(\frac{1}{3}(2X_2 - Y_2), \frac{1}{3}\right).$$

The belief about the first attribute, $\mathcal{X}_1|X,Y$, is equal to the true attribute level x_1^* since it is noiseless. The belief about the second attribute exhibits the contrast effect. If y is very good in the second attribute (i.e. if Y_2 is very large), then in contrast, x is perceived to be poorer in the second attribute (i.e. then $\frac{1}{3}(2X_2 - Y_2)$ is very small). Substituting the belief into the expected utility formula gives that x is chosen over y if and only if

$$\mathbb{E}[u(\mathcal{X})|X,Y] = -e^{-3x_1^*} - e^{-(2X_2 - Y_2) + 3/2} > -e^{-3y_1^*} - e^{-(2Y_2 - X_2) + 3/2} = \mathbb{E}[u(\mathcal{Y})|X,Y].$$

To get the choice probability, substitute in $X - x^* = Y - y^* = \epsilon$ to get an equivalent inequality

$$\frac{3}{2} + \ln\left(\frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{y_2^* - 2x_2^*} - e^{x_2^* - 2y_2^*}}\right) > -\epsilon^2.$$

11 Similarly $\mathcal{Y}_1|X,Y = y_1^*$, and $\mathcal{Y}_2|X,Y \sim \mathcal{N}\left(\frac{1}{3}(2Y_2 - X_2), \frac{1}{3}\right)$.

12 The expected utilities above can be understood as follow. In $\mathbb{E}[u(\mathcal{X})|X,Y] = -e^{-3x_1^*} - e^{-(2X_2 - Y_2) + 3/2}$, the utility from the first attribute is clear due to perfect perception. We have mentioned that the contrast effect influences perception in the second attribute, and hence also the expected utility. The better Y_2 is, the smaller the expected utility for x. The constant in the exponent of the second term comes from the uncertainty. Because $\mathcal{X}_2|X,Y$ is normally distributed, e^{-3X_2} is log-normal, and its expectation involves a constant from the variance of $\mathcal{X}_2|X,Y$.
Since the $\epsilon_2 \sim \mathcal{N}(0, 1)$, the choice probability can be expressed using the normal c.d.f Φ,

$$C(x, \{x, y\}) = \Phi\left(-\frac{3}{2} + \ln \left(\frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{y_2^* - 2x_2^*} - e^{x_2^* - 2y_2^*}}\right)\right).$$

For interpretation, first recall that $x_1^* > y_1^*$ and $y_2^* > x_2^*$. Therefore, both $e^{-3y_1^*} - e^{-3x_1^*}$ and $e^{y_2^* - 2x_2^*} - e^{x_2^* - 2y_2^*}$ are positive. Moreover, since both Φ and \ln are increasing functions, the choice probability is increasing in x_1^* and x_2^*, and decreasing in y_1^* and y_2^*. Intuitively, the agent is more likely to choose x if the true attribute levels of x improve, less so if the attributes of y become more desirable.

The horizontal asymptote comes from the noiseless perception in attribute one. For example, consider an alternative w that is indifferent to x. If w_1^* is large and positive, $E[u(W)|X,W] = -\exp(-3w_1^*) - E[\exp(-3W_2)|X,W] \approx -E[\exp(-3W_2)|X,W]$. So intuitively, $w \sim x$ requires $-E[\exp(-3W_2)|X,W]$ to be close to the expected utility of x. This restricts w_2^* to be close to a constant. On the other hand, if w_1^* is negative, then $-\exp(-3w_1^*)$ is a non-negligible negative number. In order to maintain the indifference, a larger w_2^* is required to compensate for this negative utility.

Another observation is that the indifference curve of y is steeper than that of x when the first attribute is small. This is a result of noisy perception in the second attribute and the contrast effect that follows. To interpret the difference, notice that y is strong in attribute two while x is lacking. When an alternative w is evaluated against x, the second attribute $W_2|W,X$ is perceived highly in comparison. However, when evaluated against y, the second attribute $W_2|W,Y$ appears not as high as before. Hence for any given $w_1^* < y_1^*$, a much stronger w_2^* is needed for w to be comparable to y than to x.

Figure 1 Crossing Stochastic Indifference Curves

The indifference curve can be traced out using the definition $C(x, \{x, y\}) = 0.5$. Because $\Phi(0) = 0.5$, we have $x \sim y$ if and only if

$$0 = -\frac{3}{2} + \ln \left(\frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{y_2^* - 2x_2^*} - e^{x_2^* - 2y_2^*}}\right).$$

13We will show that if $x_1^* > y_1^*$ and $y_2^* > x_2^*$ does not hold, the dominating option will be chosen with probability 1 in the next section.
Any x and y with attributes satisfying the above equation are stochastically indifferent.

Generically, if $x \sim y$, their indifference curves cross. For illustration, we let $x^* = (3, 0)$ and $y^* = (3 - \frac{1}{3}\ln(1 - e^{9/2} + e^{27/2}), 3)$ and check that $x \sim y$. As shown in Figure 1, the red dots are the corresponding true attribute levels, and the indifference curve of x is the solid curve, whereas that of y is dashed. The two curves intersect at x^* and y^*. The curves are indistinguishable for large values in the first attribute. Because the curves are distinct, intransitivity can occur when we consider any z with attributes in the shaded area. As in Figure 1, z^* is below the y-curve and above the x-curve. So $C(y, \{y, z\}) > 0.5$ and $C(x, \{x, z\}) < 0.5$. But as readily seen, slight improving x^* in either attribute will cause $C(x, \{x, y\}) > 0.5$. Thereby strictly violating weak transitivity. The example is itself a proof of the following existence result.

Proposition 1. Suppose there is imperfect perception in one of the attributes. There exists a normal-Bayesian rational agent with a standard preference who displays intransitivity.

3.2. Joint-Separate Valuation Reversal

The effect refers to the reversal of evaluations for the alternatives in two contexts. In an experiment of Hsee (1996), the subjects (as company owners) were asked for their valuations in terms of willingness to pay to hire different job candidates as programmers. Candidate x has a college GPA of 4.9 out of 5 and has written 10 programs in the computer language KY. Candidate y has a GPA of 3.0 from the same school, and has written 70 similar programs in the same language. When the subjects were asked to evaluate x alone, the average valuation was about 32.7k dollars; when asked to evaluate y alone, the average valuation was less and about 26.8k. However, when the two candidates were presented together, the evaluations reversed. The average valuation for x in the presence of y became 31.2k, less than the new valuation for y, 33.2k. With abuse of notation, we denote by $\$(x)$ and $\$(y)$ the valuation or the average willingness to pay for x and y in dollars, and denote by $\$(x|x, y)$ the average valuation for x in the presence of y, and $\$(y|x, y)$ for y in the presence of x. A decision maker is said to display j-s reversal if there exist x, y such that both $\$(x) > $\$(y)$ and $\$(x|x, y) < $\$(y|x, y)$ holds.

In the experiment, the two attributes are the GPAs and the programming experience. While the GPA (scaled out of 5) is easy to interpret, the programming experience is
hard. Although the programming experience is explicitly measured in numbers of programs written, it is not clear how advanced the computer language KY is, and how difficult it is to write programs in. The subjects as “company owners” may not be experts in programming, and are uncertain of their subjective interpretation. Hence it is reasonable to model at least one of the attributes with imperfect perception.

To show the existence of reversal in our model, we need to find a pair of \(x \) and \(y \) such that \(x^*_1 > y^*_1 \) and \(x^*_2 < y^*_2 \), and that \($(x) > $(y) \) and \($(x|x,y) < $(y|x,y) \) hold simultaneously. In this subsection, we use the average posterior expected utility as a proxy for average willingness to pay. That is, \($(x) \) is understood as the average posterior expected utility of \(x \) in \{x\}, \($(y) \) that of \(y \) in \{y\}. And \($(x|x,y), $(y|x,y) \) that of \(x \), of \(y \) in \{x,y\}.

When there is only one option, the posterior is based only on its own signal. For noiseless perception, \(X_1|X = x^*_1 \). The noisy one has Bayesian posterior \(X_2|X \sim N(\frac{1}{2}X_2, \frac{1}{2}) \). Hence the average posterior expected utility is

\[
$(x) := E_X[E_{X_2}[-e^{-3x^*_1} - e^{-3X_2}|X]] = -e^{-3x^*_1} - e^{-\frac{3}{2}x^*_2 + \frac{27}{8}}. \quad (14)
\]

When there are two options, from similar analysis in previous subsection we obtain

\[
$(x|x,y) := E_{X,Y}[E_{X_2}[-e^{-3x^*_1} - e^{-3Y_2}|X,Y]] = -e^{-3x^*_1} - e^{-(2x^*_2 - y^*_2)+2}.
\]

Also, an analogous expression holds for \($(y|x,y) \). The two inequalities \($(x) > $(y) \) and \($(x|x,y) < $(y|x,y) \) are then

\[
\begin{align*}
-e^{-3x^*_1} - e^{-\frac{3}{2}x^*_2 + \frac{27}{8}} &< e^{-3y^*_1} - e^{-\frac{3}{2}y^*_2 + \frac{27}{8}} \\
-e^{-3x^*_1} - e^{-(2x^*_2 - y^*_2)+2} &< -e^{-3y^*_1} - e^{-(2y^*_2 - x^*_2)+2}.
\end{align*}
\]

There are many pairs of alternatives that satisfy both inequalities. For illustration, let \(x^* \) be (3, 0) as in the previous subsection, and Figure 2 plots the shaded region where both inequalities are satisfied. The dashed curve is the boundary defined by the first inequality, and the solid curve by the second. Any \(y \) with attributes \(y^* \) in the shaded region is an example of the desired reversal.

This mechanism that causes the reversal is intuitively shown in Figure 2. A \(y \) that is bad in the first attribute easily satisfies \($(y) < $(x) \) in separate valuations. Because the utility

\[\text{14} \quad \text{A similar expression holds for } y.\]
The solid curve is the set of all attributes that have the same average posterior utility as x in a binary choice problem, and therefore naturally looks similar to the stochastic indifference curve of x in Figure 1. The dash line in 2 is determined by the curve \(\{ w^* \in \mathbb{R}^2 | (x) = (w) \equiv -e^{-3w_1} - e^{-3w_2} + \frac{27}{8} \} \). It has a vertical asymptote given by $(x) \approx -e^{-3w_1}$ for large values of w_2^*.

function is concave and the perception is noisy, a strong y^*_2 attribute cannot effectively increase the overall valuation. However, in joint valuation, there is a clear contrast in the second attributes for $x^*_2 < y^*_2$. In comparison, $X|X,Y$ is perceived as much worse off, and $Y|X,Y$ much better off, resulting in the reversal. The above analysis proves the following existence result.

Proposition 2. Suppose there is imperfect perception in one of the attributes. There exists a normal-Bayesian rational agent with standard preference who displays j-s reversal.

3.3. The Compromise Effect and Ternary Choices

The compromise effect involves choice problems of two and three options. As in Figure 3, suppose there is a binary choice problem with options x, y where x is better than y in the first attribute but y is better in the second. The compromise effect (Simonson (1989)) refers to introducing a third z in or near the region C where z^* is extremely favorable in the first attribute but extremely unfavorable in the second one. Empirically, at the introduction of z, subjects are generally led to choose the “compromising option” x, increasing its choice frequency. Mathematically, let the initial choice set be $\{x, y\}$ and
the extended choice set be \(\{x, y, z\} \) where \(z_1^* > x_1^* > y_1^* \) and \(y_2^* > x_2^* > z_2^* \). The compromise effect refers to \(C(x, \{x, y, z\}) > C(x, \{x, y\}) \) for all \(z \) “extreme enough”.

Let \(\Pr \) denote the probability measure for \(\epsilon \). We have seen previously that

\[
C(x, \{x, y\}) = \Pr \left(\frac{3}{2} - \ln \left(\frac{3}{2} - \frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \right),
\]

Similarly, we can also express the ternary probability as

\[
C(x, \{x, y, z\}) = \Pr \left(\left\{ \frac{3}{2} - \ln \left(\frac{3}{2} - \frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \right\} \cap \left\{ \frac{3}{2} - \ln \left(\frac{3}{2} - \frac{e^{-3y_2^*} - e^{-3x_2^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \right\} \right),
\]

where the first term in the intersection is the event that \(x \) is perceived better than \(y \),

\[
\left\{ \frac{3}{2} - \ln \left(\frac{3}{2} - \frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \right\} = \{ \epsilon_2 > \frac{3}{2} - \frac{4}{3} \ln \left(\frac{e^{-3y_1^*} - e^{-3x_1^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \},
\]

and the second the event that \(x \) is perceived better than \(z \),

\[
\left\{ \frac{3}{2} - \ln \left(\frac{3}{2} - \frac{e^{-3y_2^*} - e^{-3x_2^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \right\} = \{ \epsilon_2 > \frac{3}{2} - \frac{4}{3} \ln \left(\frac{e^{-3y_2^*} - e^{-3x_2^*}}{e^{-3y_2^*} - e^{-3x_2^*}} \right) \}.
\]

In these two events, both fractions inside the logarithm are positive, because \(z_1^* > x_1^* > y_1^* \) and \(y_2^* > x_2^* > z_2^* \). It is clear that both sets are monotonic in the attributes of \(x \), the better the attributes for \(x \) are, the larger the event that \(x \) is the most preferred. Through a similar rationale, it is intuitive to see in Equation (3) that the event that \(x \) is preferred to \(z \) is monotonically decreasing in \(z \)'s attributes.

More subtle is the influence of attributes of \(z \) on the preference between \(x \) and \(y \). From Equation (2), it is clear that the first attribute of \(z_1^* \) does not affect the preference between \(x \) and \(y \), because the first attribute is noiseless for all. The second attribute is not. The (main component of the) perceived second attribute of \(x \) is \(3x_2^* - y_2^* - z_2^* \).\(^{15}\) Hence the term \(-e^{-3(3x_2^* - y_2^* - z_2^*)} \) is (the main component of) the posterior utility of \(x \) from the second attribute. A weak attribute level of \(z_2^* \) contrasts with that of \(x \), increasing \(x \)'s perceived level and its posterior utility level. Therefore, \(x \) appears more appealing in the context of an undesirable \(z \). Similarly, such an undesirable \(z \) also increases the posterior utility of \(y \). However, since \(y_2^* > x_2^* \), \(y \) is more satiated than \(x \) in the second attribute. Hence the

\(^{15}\) Seen from the posterior belief being \(X_2 \sim N(\frac{1}{4}(3X_2 - Y_2 - Z_2), \frac{1}{4}) \).
increase in perceived levels benefits \(x \) more. Mathematically, both the posterior utility of \(y \) and of \(x \) from the second attribute increase as \(z_2^* \) decreases, but their gap

\[
e^{-\frac{3}{4}(3z_2^*-y_2^*-z_2^*)} - e^{-\frac{3}{4}(3y_2^*-x_2^*-z_2^*)} = -e^{-\frac{3}{4}(3z_2^*-y_2^*-z_2^*)} - \left(-e^{-\frac{3}{4}(3y_2^*-y_2^*-z_2^*)} \right) = \left(-e^{-\frac{3}{4}(3y_2^*-y_2^*)} - (-e^{-\frac{3}{4}(3z_2^*-y_2^*)}) \right) \exp \left(\frac{3}{4}z_2^* \right)
\]
decreases. Therefore, from Equation (2), a low \(z_2^* \) benefits \(x \) more, causing \(x \) to be preferred to \(y \).

To show that the compromise effect occurs, we take the limit that \(z_1^* \rightarrow x_1^* \) from the right and see from Equation (3) that \(x \) is perceived better than \(z \) with probability approaching 1. I.e. \(\Pr \left(\{ \mathbb{E}[u(X)|X,Y,Z] > \mathbb{E}[u(Z)|X,Y,Z] \} \right) \rightarrow \mathbb{I} \) as \(z_1^* \rightarrow x_1^* \). Moreover, for \(z_2^* \) small enough, the event in Equation (2) becomes a superset of the event in Equation (1). I.e. \(\Pr \left(\{ \mathbb{E}[u(X)|X,Y,Z] > \mathbb{E}[u(Y)|X,Y,Z] \} \right) > C(x,\{x,y\}) \) for \(z_2^* \) small enough. Therefore \(C(x,\{x,y,z\}) > C(x,\{x,y\}) \) for inferior enough \(z \). We have just proved the following result.

Proposition 3 (The Compromise Effect). Assume the parametrization in this section. For any \(x,y \) with \(x_1^* > y_1^* \) and \(x_2^* < y_2^* \), there exists \(\delta > 0 \) and \(D \in \mathbb{R} \) such that for all \(z \) with \(z_1^* - x_1^* \in (0,\delta) \) and \(z_2^* < D \), the inequality \(C(x,\{x,y,z\}) > C(x,\{x,y\}) \) holds.

The result above points out an important distinction between our model and a large class of models that satisfy Monotonicity (also called Regularity). This includes the class of all random utility models (see e.g. Block and Marschak (1960) and Falmagne (1978) and section 5 of Rieskamp et al. (2006)). In the random utility framework, the utility of the options \(x,y,z \) are random variables \(U_x, U_y, U_z \), i.e. measurable functions from a probability space to \(\mathbb{R} \). The decision maker chooses \(x \) if and only if the event \(\{ U_x > U_y \text{ and } U_x > U_z \} \) is realized. A very general random utility model allows \(U_x, U_y, \) and \(U_z \) to be correlated in arbitrary ways. Nonetheless for a random utility model, it always holds that

\[
\{ U_x > U_y \} \subseteq \{ U_x > U_y \text{ and } U_x > U_z \}, \text{ and hence } C(x,\{x,y\}) < C(x,\{x,y,z\}).
\]

According to Proposition 3, our model directly violates this property, and hence it cannot be reinterpreted as any random utility model.

Through a similar mechanism, our model also captures two other effects in Figure 3. The *phantom decoy* effect (Pratkanis and Farquhar (1992)) occurs in the situation when \(z \)
is positioned near the area P. Usually, the phantom alternative is better than x in the first attribute and no worse than x in the second. Also, it is worse than y in the second attribute. In experimental settings, the subjects are told that such a z is unavailable to choose and hence the subject has to choose from \{x, y\}. Empirically, the phantom decoy increases the frequency of choosing x.\footnote{See e.g. Pratkanis and Farquhar (1992), Highhouse (1996), Pettibone and Wedell (2000), Pettibone and Wedell (2007) and Hedgcock et al. (2009) etc.} The attraction effect (Huber et al. (1982)) corresponds to introducing a third option z in or near the region A in Figure 2. In general, z needs to be inferior to x in the second attribute, and no better in the first. In addition, z needs to be better than y in the first attribute. Empirically, such a third option itself is hardly chosen, but increases the choice frequency of x. Both findings can violate Monotonicity.

Because our model predicts these two effects through a similar channel, it suggests that there can be some commonality among the effects, as argued by Highhouse (1996). Here, we omit their formal proofs to avoid repetition. Nonetheless, a proof of the attraction effect (phantom decoy effect) parallels the following intuition. Suppose there is imperfect perception in the second (first) attribute. Again, let x be inferior in the second attribute and y inferior in the first. Now introduce the third object z near A (P) that is extremely bad in the second attribute (good in the first attribute). In comparison, z causes both x and y to be perceived better in the second attribute (worse in the first attribute) than before. However, because y was already good enough in the second (barely acceptable in the first) attribute in \{x, y\}, overall x turns out relatively more favorable (less repulsive) than y.

3.4. Remarks on the Parametric Model

We have illustrated intransitivity, the valuation reversal and the compromise effect through a parametric model. However, we want to emphasize that the illustrated channel is not limited to the parameter chosen. In fact, a similar analysis works with any utility function $u(x) := u(x_1, x_2) = -e^{\gamma x_1} - e^{\rho x_2}$ where $\gamma, \rho < 0$, and any noise distributed as $\epsilon \sim N\left(0, \begin{bmatrix} 1/t_1^2 & 0 \\ 0 & 1/t_2^2 \end{bmatrix} \right)$, $t_i \in (0, \infty]$ where one of the t_i’s can be infinite.

Moreover, we also want to remark that given any family of parametrized utility functions, the parameters can be estimated easily from choice data. For example, in our parametrization, the choice probability for any binary problem is given analytically below.
Lemma 1. For any \(x, y \) where \(x_1^* > y_1^* \) and \(y_2^* > x_2^* \), the parametric model in the subsection gives \(C(x, \{x, y\}) = \Phi(\theta(\gamma, \rho, x^*, y^*, t)) \), where \(\Phi \) is the standard normal c.d.f. function and \(\theta(\gamma, \rho, x^*, y^*, t) \) is defined as

\[
\theta := \frac{1}{\sqrt{\frac{\rho \sqrt{2 + t_1^2}}{2 + t_1^2} + \frac{\gamma \sqrt{2 + t_1^2}}{2 + t_1^2}}} \left[\frac{\gamma^2}{2(2 + t_1^2)} - \frac{\rho^2}{2(2 + t_2^2)} + \ln \left(\frac{\exp\left(\frac{\gamma (t_1^2 + 1)x_1^* - x_1^*}{2 + t_1^2} \right) - \exp\left(\frac{\gamma (t_1^2 + 1)y_1^* - y_1^*}{2 + t_1^2} \right)}{\exp\left(\frac{\rho (t_2^2 + 1)x_2^* - x_2^*}{2 + t_2^2} \right) - \exp\left(\frac{\rho (t_2^2 + 1)y_2^* - y_2^*}{2 + t_2^2} \right)} \right) \right].
\]

When an attribute becomes noiseless (i.e. \(t_1 \to \infty \)), the above Lemma reduces to Equation 1. As seen previously, an \(x \) with better attributes results in a higher \(\theta \) and higher \(C(x, \{x, y\}) \), and the reverse holds for \(y \). Moreover, because \(x_1^* > y_1^* \), and \(\gamma \) is the preference parameter in the first attribute, a larger \(\gamma^2 \) implies that the first attribute is more decisive, and hence more likely to choose \(x \).

As the Lemma specifies choice probabilities in terms of parameters, it can be used to estimate exponential utility functions when there are observations for different menus. When the parameters are estimated, the model can be used to predict choice probabilities in new menus. Here, we adopt an implicit assumption similar to that in Koszegi and Szeidl (2013). To maintain empirical identifiability and avoid excessive degrees of freedom, the definitions and measurements of the attributes must be determined before fitting the model to data. They should not be free parameters but part of the data that the model seeks to explain.\(^\text{17}\)

Although the expression in the Lemma can be useful for experimenters, the agent in the model does not evaluate this complicated algebra before making the choice. She simply chooses the choice item that maximizes her expected utility while being unaware of the choice probabilities her actions generate.

4. The General Results

We have now shown that our simple parametric model can explain and predict several contextual choice effects. These results are \textit{not} outcomes of model flexibility. On the contrary, the model is quite rigid in the sense that these types of contextual effects \textit{must occur} even without the parametric assumptions. One can view these as testable implications of

\(^{17}\)While it is easier to satisfy this procedure in marketing experiments where the attributes of each object are specified by the experimenter, it is sometimes difficult to include other relevant attributes in real life decision-making processes. For example, when shopping (online or in person), individuals may base their decisions on attributes that are not listed on the product descriptions. For instance, decisions may be made based on the retailer’s customer service, which is usually not listed in the product labels. Hence it is difficult to account for these influences.
the model. We first define the term “decoy choice pattern”, as an abstraction of the attraction, compromise, and phantom decoy effect. We will then show that the general model predicts the decoy choice pattern under the general class of preferences and prior-signal distributions as described in section 2. We also show that although the model captures several contextual effects, the model also predicts classical rational choice behavior under some specific type of menus, and hence there are other rationality constraints that the model satisfies.

4.1. The Decoy Choice Pattern

The next definition is relevant to the phantom decoy effect, the compromise effect and the attraction effect. We start with a binary choice problem where x is better than y in the first attribute but y is better in the second, as shown in Figure 3. As discussed previously, a third object z in the lower right corner of Figure 3 generally increases the choice probability of x. Due to symmetry, it is also true empirically that if instead of z, a third object w lies in the upper left corner of the same Figure 3, it will increase the choice probability of y (e.g. a compromise effect where y is the compromising option). These empirical effects share a commonality that z or w is either unavailable (as a phantom decoy) or rarely chosen (as in compromise effect or attraction effect). We can reasonably conjecture that both the attraction effect and the compromise effect will remain qualitatively unchanged when the third option is unavailable. In summary, there exists some w and z where the difference $z^* - w^*$ points towards the lower-right half plane, such that the unavailable third option w increases the choice probability of y whereas the unavailable third option z increases the choice probability of x. We call this comparative statics the decoy choice pattern.

Definition 1. The choice behavior is said to display the decoy choice pattern if there exists a vector $\Delta \in \mathbb{R}^2$ with $\Delta_1 > \Delta_2$, such that for any x, y, z, w with attributes in \mathbb{R}^2 satisfying $x_1^* > y_1^*$, $x_2^* < y_2^*$ and $z^* = w^* + \Delta$, the inequality $C(x, \{x, y, (z)\}) > C(x, \{x, y, (w)\})$ holds.

Our model predicts the decoy choice pattern, which is an empirically testable implication in two ways. First, when there are at least two attributes under consideration, the agent does not satisfy the Luce’s IIA over menus described in the decoy choice pattern. Second, the agent violates Luce’s IIA in a specific way. I.e. making x the compromising option in the experiments *does not reduce* the choice probability of x.
Theorem 1. Any normal-Bayesian rational agent with standard preference and imperfect perception displays the decoy-choice pattern.

Observe that Theorem 1 is a sufficiency result. Intuitively, it states that if z^* is to the right or to the bottom of w^*, such a z affects the choice probability of x positively as opposed to w. Another interesting implication of the theorem is that the attraction effect and the compromise effects should still exist even when z is unavailable. Since z is rarely chosen in experiments, such a prediction is reasonable to expect, but is special to our model. Other choice models usually do not consider unavailable options.

4.2. Choice under Dominance
We have seen previously that when there is a trade-off between the alternatives, i.e. some alternatives are better in the first attribute while others are better in the second, contextual choices arise in the model. A natural question is what would the model predict when such
a trade-off is absent. Intuitively, if we are given two alternatives x and z where $z^* > x^*$, a rational agent should always choose z due to the monotonicity of the utility function.\(^{18}\) The prediction of our model fits this intuition. Since the error ϵ in perception is the same for each of x and z, the perturbed signal $X = \epsilon + x^*$ and $Z = \epsilon + z^*$ preserves the inequality: $Z > X$. A Bayesian rational agent can hence correctly infer the inequality and choose optimally.

Theorem 2. For any $\{x, z\}$ with $x^*, z^* \in \mathbb{R}^2$, a normal-Bayesian rational agent with standard preference and imperfect perception chooses z with probability 1 if $z^* > x^*$.

It is clear that the above theorem predicts the following intuitive choice effect described and observed in Tversky (1972) and Tversky and Russo (1969). Consider an individual that is choosing between a trip to Paris (x) and a trip to Rome (y). If she is interested to see both places and doesn’t have a strong preference for one over the other, her choice probability for Paris (x) would be roughly 1/2. Now if we offer the individual a new choice problem with two alternatives, a trip to Paris (x) or a trip to Paris plus a $1 bonus ($z$), he would probably not hesitate to choose the option with the extra dollar. In other words, choosing z over x is of probability 1. However, if we offer him a third choice problem that consists of a trip to Paris plus $1 and a trip to Rome, it is intuitive that the choice probability should still be roughly 1/2.

An implication of the above theorem is that transitivity holds deterministically for a set of choice objects where each one is either dominating or dominated by any other. Therefore, a violation of weak stochastic transitivity can happen only when the alternatives do not dominate each other. We state this result formally and the proof is immediate.

Corollary 1. Suppose x, y, z have attributes $x^* > y^* > z^*$, then $1 = C(x, \{x, y\}) = C(y, \{y, z\}) = C(x, \{x, z\}) > 1/2$.

Theorem 2 can also be generalized to the following statement. When $S = \{x^1, \ldots, x^n\}$ is the choice set involving multiple options, if x^i is dominated in the set S, then $C(x^i, S) = 0$. In other words, objects are chosen with positive probability only when they are on the “attribute possibility frontier”. This is a rationality condition that the agent has to satisfy, and it rules out many other types of irrational choice behaviors.\(^{19}\)

\(^{18}\) The vector inequality $z^* > x^*$ means $z^*_1 \geq x^*_1$ and $z^*_2 \geq x^*_2$ with at least one inequality being strict.

\(^{19}\) It is also one of the distinctions between our model and Natenzon (2017). In his model, a dominated object x with $x^* < y^*$ can still be chosen with probability significantly greater than 0.
An intuitive conjecture is that a similar result holds for j-s reversal. But it does not in general. It is true that Corollary 2 follows immediately from the proof of Theorem 2.

COROLLARY 2. For any \(\{x, z\} \) with \(x^* < z^* \in \mathbb{R}^2 \), it holds that \(S(x|x, z) < S(z|x, z) \).

However, it does not follow that \(S(x) < S(z) \) if \(x^* < z^* \) when the correlations \(r \) and \(R \) are not restricted. Consider the apartment-choice problem and the two attributes are convenience and safety. The decision maker values both attributes, and her prior believes that the two attributes are negatively correlated: on average, a convenient location is usually less safe, and a safe location is farther away and hence less convenient. Let \(x \) and \(z \) be two apartments that are exactly of the same safety level, but \(z \) is more convenient, i.e., \(x^* < z^* \). It clearly holds that \(S(x|x, z) < S(z|x, z) \) in a joint valuation. But the decision maker cannot see this comparison in the separate valuations. When she only sees the very convenient \(z \), her prior makes her believe that \(z \) is likely unsafe. If she values safety much more than convenience, her valuation for \(S(z) \) can be low. On the other hand, if she sees only \(x \), since \(x \) is not so convenient, her posterior assumes \(x \) is safe. As a result, she may value \(S(x) \) highly. In this case, \(S(x) > S(z) \) is still allowed by our model even though \(x^* < z^* \). As a numerical example, let the prior be \(N \left(0, \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \right) \) and the noise be \(\epsilon \sim N(0, I_2) \). A signal \(X = (0, 0) \) would result in the posterior \(X|X \sim N \left(0, \frac{1}{15} \begin{bmatrix} 7 & -2 \\ -2 & 7 \end{bmatrix}^{-1} \right) \). A dominating signal \(Z = (1, 0) \) would result in the posterior \(Z|Z \sim N \left(\begin{bmatrix} 7/15 \\ -2/15 \end{bmatrix}, \frac{1}{15} \begin{bmatrix} 7 & -2 \\ -2 & 7 \end{bmatrix}^{-1} \right) \). If the utility function values the second attribute much more than the first, then \(\mathbb{E}[u(Z)|Z] < \mathbb{E}[u(X)|X] \). This observation is a novel prediction of our model, that J-S reversal is possible even though one option dominates the other in the attribute space.

4.3. Limiting Noise Structure

As shown in Proposition 3, our model does not satisfy Monotonicity, a fundamental property of all random utility models. Despite this difference, one interesting question may be whether such non-Monotonic predictions disappear in some limiting parameters of our model. For example, if the noise in the signal goes to zero, does our model converge to some well-known models? We discuss below that as the noise term becomes small, our model approximates the well-known conditional probit model of Hausman and Wise.
(1978). Because Hausman and Wise (1978)’s model is a random utility model, it satisfies Monotonicity. We also remark that because the conditional probit model can explain the similarity effect, a corollary of this subsection is that our model can also explain the similarity effect.

Again, restrict our discussion to the exponential utility functions so that \(u(x_1, x_2) = -e^{\gamma x_1} - e^{\rho x_2} \). Given a finite choice set \(S = \{x^1, \ldots, x^n\} \), the posterior belief of the \(i \)th alternative under imperfect perception is

\[
X^i|X^1, \ldots, X^n \sim \mathcal{N}\left((T + n\Omega^{-1})^{-1}\left(TX^i + n\Omega^{-1}X^i - \sum_{j=1}^{n}\Omega^{-1}X^j\right), (T + n\Omega^{-1})^{-1}\right).
\]

When the noise variance converges to zero, i.e. \(T^{-1} \rightarrow 0 \), the posterior belief \(X^i|X^1, \ldots, X^n \) is approximately \(\mathcal{N}(X^i, T^{-1}) = \mathcal{N}(x^{is} + \epsilon, T^{-1}) \). When the utility function is smooth enough near \(x^{is} \), we approximate the expected utility using the utility of the expected attributes

\[
\mathbb{E}[u(X)|X^1, \ldots, X^n] \approx u(x^{is} + \epsilon)
\]

which is already a random utility model. Under exponential utility, this approximates the Hausman and Wise (1978),

\[
u(x^{is} + \epsilon) = -e^{\gamma(x^{is}+\epsilon_1)} - e^{\rho(x^{is}+\epsilon_2)} \approx u_1(x_1^{is}) + u_2(x_2^{is}) + \beta_1 u_1(x_1^{is}) + \beta_2 u_2(x_2^{is}),
\]

where we have used the first order approximation at \(x^{is} \) with the notation that \(u_1(x_1) = -e^{\gamma x_1}, u_2(x_2) = -e^{\rho x_2} \) and \(\beta_1 = \gamma \epsilon_1, \beta_2 = \rho \epsilon_2 \). It is clear that the form of the approximation coincide with equation (3.6) in Hausman and Wise (1978).

5. Discussion and Conclusion

We present a choice model with underlying rational preferences. Through noisy attribute perception, the model generically predicts the compromise effect, the attraction effect and the phantom decoy effect, and the existence of choice cycles and j-s reversal.

Despite the context-dependent predictions, in our model, the noise of an alternative has the same exogenously fixed distribution in all contexts. Hence the noise is context-independent in the same way as a random utility model is. In a random utility model, the distribution of a random utility (correlated with others or not) is not context-dependent, and the agent observes only the utilities of the options available. Analogously in our model, the agent observes only the signals of alternatives on the menu. But different from a random
utility model, the Bayesian posterior belief in our model is endogenous and depends on the menu, and hence so the choices.

Although our simple mechanism can explain several contextual effects, other mechanisms are likely also at play in reality. Imagine a choice problem with many options. An agent is asked to rank the options, or is asked to choose one from each pair. Our model implies that these two tasks yield the same ordering since the posterior utilities are the same. This is a property of our working assumption that the signal precision is fixed regardless of availability and contexts. So the agent always learns all the available information in a choice problem. Therefore, our model is not intended to explain empirical phenomena such as the choice overload (Iyengar and Lepper (2000)), for which the main driver is likely the limited information capacity. For these choice effects, a more suitable model would likely cover endogenous attention and information acquisition. See Guo (2016) for one such model in explaining choice overload. On the other hand, when the agent’s finite power to process information is not of first-order importance, our model captures the systematic mechanism of contextual choices through imperfect attribute perception.

Similarly, another related interesting mechanism is limited memory. For example, after the agent sees \{x, y, z\}, the current model predicts the same choice behavior for the choice set \{x, y, (z)\} where z is shown but not available, and the choice set \{x, y\} where z is later removed. This does not explain the findings in Sivakumar and Cherian (1995) that the choice probability of x (the target) is significantly reduced following the removal of z, although it does not fully recover to the level at which z was never shown. A possible future extension to capture such empirical findings is a model where the agent partially forgets what she has learned when stimuli are removed.

Appendix A: Proof of Lemma

Proof of Lemma 1 We calculate directly the expected utility

\[
E[u(X)|X, Y] = E\left[-e^{\gamma Y_1} - e^{\gamma Y_2}|X, Y\right]
\]

\[
= -\exp\left(\gamma \left(\frac{t_1^2 + 1}{2 + t_1^2}\right) Y_1 - \frac{Y_2}{2(2 + t_1^2)}\right) - \exp\left(\gamma \left(\frac{t_1^2 + 1}{2 + t_1^2}\right) Y_1 - \frac{Y_2}{2(2 + t_1^2)}\right)
\]

where the second equality is due to the normally distributed exponents. The third equality is due to the identities \(x^* + \epsilon = X, y^* + \epsilon = Y\). Similarly,

\[
E[u(Y)|X, Y] = -\exp\left(\gamma \left(\frac{t_1^2 + 1}{2 + t_1^2}\right) x_1^* - \frac{x_1}{2(2 + t_1^2)}\right) - \exp\left(\gamma \left(\frac{t_1^2 + 1}{2 + t_1^2}\right) x_1^* - \frac{x_1}{2(2 + t_1^2)}\right)
\]

I thank the associate editor and the referees for pointing this out.
Hence given \(x^*, y^* \) and \(\epsilon \), the agent would choose \(x \) over \(y \) iff \(\mathbb{E}[u(X)|X,Y] > \mathbb{E}[u(Y)|X,Y] \). Suppose \(x_1^* > y_1^* \) and \(y_2^* > x_2^* \), then we see that \(x \) is chosen over \(y \) iff

\[
\exp \left(\frac{\gamma^2}{2(2 + t_1^2)} - \frac{\rho^2}{2(2 + t_2^2)} \right) \exp \left(\frac{\gamma (t_{11}^* + 1)x_{11}^* - x_{11}^*}{2 + t_1^2} \right) - \exp \left(\frac{\gamma (t_{11}^* + 1)y_{11}^* - y_{11}^*}{2 + t_1^2} \right) \geq \exp \left(\frac{\rho t_{22}^2\epsilon_2}{2 + t_2^2} - \frac{\gamma t_{22}^2\epsilon_1}{2 + t_2^2} \right).
\]

(1)

Since \(x_1^* > y_1^* \) and \(y_2^* > x_2^* \), we can take natural-log on both hand sides of (1) to obtain the following equivalent condition

\[
\frac{\gamma^2}{2(2 + t_1^2)} - \frac{\rho^2}{2(2 + t_2^2)} + \ln \left(\frac{\exp \left(\frac{\gamma (t_{11}^* + 1)x_{11}^* - x_{11}^*}{2 + t_1^2} \right)}{\exp \left(\frac{\gamma (t_{11}^* + 1)y_{11}^* - y_{11}^*}{2 + t_1^2} \right)} \right) \geq \frac{\rho t_{22}^2\epsilon_2}{2 + t_2^2} - \frac{\gamma t_{22}^2\epsilon_1}{2 + t_2^2}.
\]

Notice that RHS follows a normal distribution \(\mathcal{N} \left(0, \left(\frac{2\gamma^2}{2 + t_1^2} \right)^2 \left(\frac{2\gamma^2}{2 + t_2^2} \right)^2 \right) \). Hence \(x^* \) is chosen over \(y^* \) iff some standard normal random variable \(Z \) is below the threshold \(\theta \) defined below:

\[
\theta(\gamma, \rho, x^*, y^*, t) := \frac{1}{\sqrt{\left(\frac{2\gamma^2}{2 + t_1^2} \right)^2 + \left(\frac{2\gamma^2}{2 + t_2^2} \right)^2}} \left[\frac{\gamma^2}{2(2 + t_1^2)} - \frac{\rho^2}{2(2 + t_2^2)} + \ln \left(\frac{\exp \left(\frac{\gamma (t_{11}^* + 1)x_{11}^* - x_{11}^*}{2 + t_1^2} \right)}{\exp \left(\frac{\gamma (t_{11}^* + 1)y_{11}^* - y_{11}^*}{2 + t_1^2} \right)} \right) \right].
\]

Appendix B: Proof of Theorems

Proof of Theorem 1 It suffices to show that under our assumptions, for every realization of \(\epsilon \) the following inequality holds

\[
\mathbb{E}[u(X)|X,Y,Z] - \mathbb{E}[u(Y)|X,Y,Z] > \mathbb{E}[u(X)|X,Y,W] - \mathbb{E}[u(Y)|X,Y,W] .
\]

Conditional on \(X, Y, W \), the posterior for \(X \) is

\[
\Pr(X|X,Y,W) \propto \exp \left(\frac{-X'\Omega^{-1}X}{2} \right) \exp \left(\frac{-Y'\Omega^{-1}Y}{2} \right) \exp \left(\frac{-(X'\Omega^{-1}Y + Y'\Omega^{-1}X)}{2} \right) \times 1_{(X-X=Y-Y=W=W)} \times \exp \left(\frac{-1}{2} \left[X' (3\Omega^{-1} + T) X - 2 (TX - \Omega^{-1}(Y + W - 2X))'X \right] \right)
\]

\[
\exp \left(\frac{-1}{2} \left[\left(X - (3\Omega^{-1} + T)^{-1} (TX - \Omega^{-1}(Y + W - 2X)) \right)' \left(3\Omega^{-1} + T \right) \left(X - (3\Omega^{-1} + T)^{-1} (TX - \Omega^{-1}(Y + W - 2X)) \right) \right] \right)
\]

So we denote the above posterior distribution of \(X|X,Y,W \) by \(\mathcal{N} \left(\mu(x^*,y^*,w^*,\epsilon), \hat{\Omega} \right) \), where

\[
\mu(x^*,y^*,w^*,\epsilon) := (3\Omega^{-1} + T)^{-1} (TX^* + T\epsilon - \Omega^{-1}(y^* + w^* - 2x^*)) = (3\Omega^{-1} + T)^{-1} (TX - \Omega^{-1}(Y + W - 2X)) ,
\]

and

\[
\hat{\Omega} := (3\Omega^{-1} + T)^{-1} .
\]

Denote the density of \(X|X,Y,W \sim \mathcal{N}(\mu, \hat{\Omega}) \) by \(\phi(X - \mu, \hat{\Omega}) \). The posterior expected utility is therefore

\[
\mathbb{E}[u(X)|X,Y,W] = \int_{\mathbb{R}^2} u(X) \times \phi \left(X - \mu(x^*,y^*,w^*,\epsilon), \hat{\Omega} \right) \, dX
\]

\[
= \int_{\mathbb{R}^2} u(s + \mu(x^*,y^*,w^*,\epsilon)) \times \phi \left(s, \hat{\Omega} \right) \, ds .
\]
Similarly,
\[Y|X,Y,W \sim \mathcal{N} \left(\mu(y^*;x^*,w^*,\epsilon), \hat{\Omega} \right). \]

Because
\[\mu(x^*; y^*, w^*, \epsilon) := \hat{\Omega} \left(Tx^* + T\epsilon - \Omega^{-1}(y^* + w^* - 2x^*) \right) = \mu(y^*; x^*, w^*, \epsilon) - (y^* - x^*), \]
we have
\[\mathbb{E}[u(Y)|X,Y,W] = \int_{\mathbb{R}^2} u(s + (y^* - x^*) + \mu(x^*; y^*, w^*, \epsilon)) \times \phi \left(s, \hat{\Omega} \right) ds. \]

Recall that \(\mu(x^*; y^*, w^*, \epsilon) = \hat{\Omega}T x^* + \hat{\Omega}T\epsilon - \hat{\Omega}^{-1}y^* - \hat{\Omega}^{-1}w^* + 2\hat{\Omega}^{-1}x^* \). Substitute in \(z^* := w^* + \Delta \) for \(w^* \) we have
\[\mathbb{E}[u(X)|X,Y,Z] - \mathbb{E}[u(Y)|X,Y,Z] \]
\[= \int_{\mathbb{R}^2} u(s + \mu(x^*; y^*, z^*, \epsilon)) \times \phi \left(s, \hat{\Omega} \right) ds - \int_{\mathbb{R}^2} u(s + (y^* - x^*) + \mu(x^*; y^*, z^*, \epsilon)) \times \phi \left(s, \hat{\Omega} \right) ds \]
\[= \int_{\mathbb{R}^2} \left[u \left(s + \mu(x^*; y^*, w^*, \epsilon) - \hat{\Omega}^{-1}\Delta \right) - u \left(s + (y^* - x^*) + \mu(x^*; y^*, w^*, \epsilon) - \hat{\Omega}^{-1}\Delta \right) \right] \times \phi \left(s, \hat{\Omega} \right) ds. \]

Since \(u \) is standard, and \(y_1^* < x_1^* \) and \(y_2^* > x_2^* \), if \(-\hat{\Omega}^{-1}\Delta \in (-\infty,0) \times (0,\infty)\), i.e. the second quadrant, then
\[u \left(s + \mu(x^*; y^*, w^*, \epsilon) - \hat{\Omega}^{-1}\Delta \right) - u \left(s + (y^* - x^*) + \mu(x^*; y^*, w^*, \epsilon) - \hat{\Omega}^{-1}\Delta \right) \]
\[> u \left(s + \mu(x^*; y^*, w^*, \epsilon) \right) - u \left(s + (y^* - x^*) + \mu(x^*; y^*, w^*, \epsilon) \right) \]
for all \(s \) and \(\epsilon \). When we integrate out \(s \), we have \(\mathbb{E}[u(X)|X,Y,Z] - \mathbb{E}[u(Y)|X,Y,Z] > \mathbb{E}[u(X)|X,Y,W] - \mathbb{E}[u(X)|X,Y,W] \) for every realization of \(\epsilon \).

Therefore, one sufficient condition is that \(-\hat{\Omega}^{-1}\Delta \in (-\infty,0) \times (0,\infty)\). If this condition holds, we have \(-\hat{\Omega}^{-1}\Delta = w \) for some \(w_1 < 0 \) and \(w_2 > 0 \). In order to show the decoy choice pattern, we just need to show there exists \(\Delta \) with \(\Delta_1 > \Delta_2 \) such that this condition holds.

Recall that we had normalized \(\Omega \) so that for some \(r \in (-1,1) \),
\[\Omega = \begin{bmatrix} r & 1 \\ 1 & r \end{bmatrix} \]
and the noise has variance
\[T^{-1} = \begin{bmatrix} 1/t_1^2 & R/(t_1 t_2) \\ R/(t_1 t_2) & 1/t_2^2 \end{bmatrix}. \]

We can calculate
\[\Omega^{-1} = \begin{bmatrix} 1/(1-r^2) & -r/(1-r^2) \\ -r/(1-r^2) & 1/(1-r^2) \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} t_1 & 0 \\ 0 & t_2 \end{bmatrix} \begin{bmatrix} 1/(1-R^2) & -R/(1-R^2) \\ -R/(1-R^2) & 1/(1-R^2) \end{bmatrix} \begin{bmatrix} t_1 & 0 \\ 0 & t_2 \end{bmatrix}. \]
It follows that
\[
\Delta = -\Omega \hat{\Omega}^{-1} \mathbf{w} = -\Omega (3\Omega^{-1} + T) \mathbf{w} = -(3I + \Omega T) \mathbf{w}
\]
\[
= -\left[\begin{array}{cc}
3 & 0 \\
0 & 3
\end{array} \right] + \left[\begin{array}{cc}
[1 \: r] & [t_1 \: 0] \\
[0 \: 1] & [t_2 \: 0]
\end{array} \right] \left[\begin{array}{c}
1/(1-R^2) \\
-R/(1-R^2)
\end{array} \right] + \left[\begin{array}{c}
[1 \: 0] \\
[0 \: 1]
\end{array} \right] \left[\begin{array}{c}
w_2 \\
w_1
\end{array} \right]
\]
\[
= -\left[\begin{array}{c}
3 + \frac{t_2^2 - t_1 t_2 R - t_1 t_2 R}{1-R^2} \\
\frac{t_1^2 - t_1 t_2 R}{1-R^2} \frac{t_2^2 - t_1 t_2 R}{1-R^2} \\
\frac{1}{3 + \frac{t_1^2 - t_1 t_2 R}{1-R^2} + \frac{t_2^2 - t_1 t_2 R}{1-R^2}}
\end{array} \right] \left[\begin{array}{c}w_1 \\
w_2
\end{array} \right]
\]

Since \(w_1 < 0\) and \(w_2 > 0\), the sufficient condition to holds when \(\Delta\) is some positive linear combinations of the two vectors
\[
\{(3(1-R^2) + t_1^2 + t_1 t_2 R R) / t_1^2 R - t_1 t_2 R, \quad \Delta = \Delta^2 \} \text{ or } \Delta = (3(1-R^2) + t_2^2 - t_1 t_2 R R) / t_2^2 R - t_1 t_2 R,
\]

And the decoy choice pattern holds when there exists such a \(\Delta\) with \(\Delta_1 > \Delta_2\). In other words, the decoy choice pattern holds if
\[
\begin{cases}
3(1-R^2) + t_2^2 - t_1 t_2 R \geq t_1^2 R - t_1 t_2 R, & \Rightarrow 3(1-R^2) > (r-1)(t_1^2 + t_2 R) \\
3(1-R^2) > (r-1)(t_2^2 + t_1 t_2 R), & \Rightarrow 3(1-R^2) > (r-1)(t_1^2 + t_2 R).
\end{cases}
\]

Because \(r, R \in (-1, 1)\) and \(t_1, t_2 > 0\), it is impossible for both \(t_1 + t_2 R < 0\) and \(t_2 + t_1 R < 0\) to hold simultaneously. Therefore the decoy choice pattern holds.

Proof of Theorem 2 As before, we start with the Bayesian posterior
\[
Pr(X|X, Z) \propto \exp \left(-\frac{X' \Omega^{-1} X}{2} \right) \exp \left(-\frac{T X - \Omega^{-1} (Z - X)}{2} \right) \times 1_{(X-X'=Z-Z)}
\]
\[
= \exp \left(-\frac{1}{2} \left[\mathcal{N}\left(2(\Omega^{-1} + T) X - 2 (TX - \Omega^{-1} (Z - X)) \right), \mathcal{N}\left(2(\Omega^{-1} + T) X \right) \right] \right)
\]
\[
\propto \exp \left(-\frac{1}{2} \left[\mathcal{N}\left(2(\Omega^{-1} + T) T X - \Omega^{-1} (Z - X)) \right), \mathcal{N}\left(2(\Omega^{-1} + T) T X \right) \right] \right)
\]

Therefore, the posterior inference for \(x^*\) is
\[
\mathcal{N}\left(2(\Omega^{-1} + T) T X - \Omega^{-1} (Z - X)) \right), \mathcal{N}\left(2(\Omega^{-1} + T) T X \right) \right)
\]

Similarly, \(Z|X, Z \sim \mathcal{N}\left(\mu(z^*; x^*, \epsilon), \Omega \right)\). Observe that they have the same variance, and that
\[
\mu(z^*; x^*, \epsilon) - \mu(x^*; z^*, \epsilon)
\]
\[
= (2\Omega^{-1} + T)^{-1} (TX + T \epsilon - \Omega^{-1} (Z - X)) - (2\Omega^{-1} + T)^{-1} (TX + T \epsilon - \Omega^{-1} (Z - X))
\]
\[
= z^* - x^* > 0.
\]

Therefore the posterior inference distribution for \(z^*\) is that for \(x^*\) translated by the vector \(z^* - x^* > 0\). Since standard preference is increasing in both attributes, we have for every \(\epsilon \in \mathbb{R}^2\)
\[
E[u(X)|X, Z] < E[u(Z)|X, Z].
\]

Hence the rational agent chooses \(z\) over \(x\) with probability 1.
Acknowledgments

The author is grateful to John Nachbar, Paulo Natenzon and Jonathan Weinstein for the inspiring discussions and guidance. The author thanks Heski Bar-Isaac, Christopher Chambers, Wiola Dziuda, Joseph Goodman, Liang Guo, Shaowei Ke, Robyn LeBoeuf, David Levine, Anqi Li, Stephen Nowlis, Brian Rogers and Marciano Siniscalchi for useful comments. The author also thanks participants at the Spring 2016 Midwest Economic Theory Meeting, 2016 Econometric Society China Meeting and 2016 SAET Conference for their comments. All errors are the author’s responsibility. The author acknowledges support from the Center for Research in Economics and Strategy (CRES), in the Olin Business School, Washington University in St. Louis, and the Economic Theory Center at Washington University in St. Louis.

References

Aguiar, V. 2015. Stochastic choice and fuzzy attention. working paper

Echenique, Saito, Tserenjigmid. 2015. The Perception Adjusted Luce Model working paper

Fudenberg,D., P. Strack, T. Strzalecki. 2015. Stochastic choice and optimal sequential sampling working paper

Rieskamp, J., J. R. Busemeyer, B. A. Mellers. 2006. Extending the bounds of rationality: evidence and
Theories of preferential choice *Journal of Economic Literature*

Ravid, D. 2015. Focus, Then Compare *working paper*.

Simonson, I. 1989. Choice Based on Reasons: The Case of Attraction and Compromise Effects. *Journal of
Consumer Research* 16 158-174

6, 45-51.

A New Model and Evidence. *PLoS computational biology* 8

Psychology* 1-12.

Experimental Psychology: Learning, Memory, and Cognition* 17 (4) 767-778.

Journal of Consumer Research 627633.

104 495500.

Usher, M., J. L. McClelland. 2004. Loss aversion and inhibition in dynamical models of multialternative
choice. *Psychological review* 111